SPiP: Splicing Prediction Pipeline, a machine learning tool for massive detection of exonic and intronic variant effects on mRNA splicing

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2022-10-23 DOI:10.1002/humu.24491
Raphaël Leman, Béatrice Parfait, Dominique Vidaud, Emmanuelle Girodon, Laurence Pacot, Gérald Le Gac, Chandran Ka, Claude Ferec, Yann Fichou, Céline Quesnelle, Camille Aucouturier, Etienne Muller, Dominique Vaur, Laurent Castera, Flavie Boulouard, Agathe Ricou, Hélène Tubeuf, Omar Soukarieh, Pascaline Gaildrat, Florence Riant, Marine Guillaud-Bataille, Sandrine M. Caputo, Virginie Caux-Moncoutier, Nadia Boutry-Kryza, Françoise Bonnet-Dorion, Ines Schultz, Maria Rossing, Olivier Quenez, Louis Goldenberg, Valentin Harter, Michael T. Parsons, Amanda B. Spurdle, Thierry Frébourg, Alexandra Martins, Claude Houdayer, Sophie Krieger
{"title":"SPiP: Splicing Prediction Pipeline, a machine learning tool for massive detection of exonic and intronic variant effects on mRNA splicing","authors":"Raphaël Leman,&nbsp;Béatrice Parfait,&nbsp;Dominique Vidaud,&nbsp;Emmanuelle Girodon,&nbsp;Laurence Pacot,&nbsp;Gérald Le Gac,&nbsp;Chandran Ka,&nbsp;Claude Ferec,&nbsp;Yann Fichou,&nbsp;Céline Quesnelle,&nbsp;Camille Aucouturier,&nbsp;Etienne Muller,&nbsp;Dominique Vaur,&nbsp;Laurent Castera,&nbsp;Flavie Boulouard,&nbsp;Agathe Ricou,&nbsp;Hélène Tubeuf,&nbsp;Omar Soukarieh,&nbsp;Pascaline Gaildrat,&nbsp;Florence Riant,&nbsp;Marine Guillaud-Bataille,&nbsp;Sandrine M. Caputo,&nbsp;Virginie Caux-Moncoutier,&nbsp;Nadia Boutry-Kryza,&nbsp;Françoise Bonnet-Dorion,&nbsp;Ines Schultz,&nbsp;Maria Rossing,&nbsp;Olivier Quenez,&nbsp;Louis Goldenberg,&nbsp;Valentin Harter,&nbsp;Michael T. Parsons,&nbsp;Amanda B. Spurdle,&nbsp;Thierry Frébourg,&nbsp;Alexandra Martins,&nbsp;Claude Houdayer,&nbsp;Sophie Krieger","doi":"10.1002/humu.24491","DOIUrl":null,"url":null,"abstract":"<p>Modeling splicing is essential for tackling the challenge of variant interpretation as each nucleotide variation can be pathogenic by affecting pre-mRNA splicing via disruption/creation of splicing motifs such as 5′/3′ splice sites, branch sites, or splicing regulatory elements. Unfortunately, most in silico tools focus on a specific type of splicing motif, which is why we developed the Splicing Prediction Pipeline (SPiP) to perform, in one single bioinformatic analysis based on a machine learning approach, a comprehensive assessment of the variant effect on different splicing motifs. We gathered a curated set of 4616 variants scattered all along the sequence of 227 genes, with their corresponding splicing studies. The Bayesian analysis provided us with the number of control variants, that is, variants without impact on splicing, to mimic the deluge of variants from high-throughput sequencing data. Results show that SPiP can deal with the diversity of splicing alterations, with 83.13% sensitivity and 99% specificity to detect spliceogenic variants. Overall performance as measured by area under the receiving operator curve was 0.986, better than SpliceAI and SQUIRLS (0.965 and 0.766) for the same data set. SPiP lends itself to a unique suite for comprehensive prediction of spliceogenicity in the genomic medicine era. SPiP is available at: https://sourceforge.net/projects/splicing-prediction-pipeline/</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/humu.24491","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/humu.24491","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 17

Abstract

Modeling splicing is essential for tackling the challenge of variant interpretation as each nucleotide variation can be pathogenic by affecting pre-mRNA splicing via disruption/creation of splicing motifs such as 5′/3′ splice sites, branch sites, or splicing regulatory elements. Unfortunately, most in silico tools focus on a specific type of splicing motif, which is why we developed the Splicing Prediction Pipeline (SPiP) to perform, in one single bioinformatic analysis based on a machine learning approach, a comprehensive assessment of the variant effect on different splicing motifs. We gathered a curated set of 4616 variants scattered all along the sequence of 227 genes, with their corresponding splicing studies. The Bayesian analysis provided us with the number of control variants, that is, variants without impact on splicing, to mimic the deluge of variants from high-throughput sequencing data. Results show that SPiP can deal with the diversity of splicing alterations, with 83.13% sensitivity and 99% specificity to detect spliceogenic variants. Overall performance as measured by area under the receiving operator curve was 0.986, better than SpliceAI and SQUIRLS (0.965 and 0.766) for the same data set. SPiP lends itself to a unique suite for comprehensive prediction of spliceogenicity in the genomic medicine era. SPiP is available at: https://sourceforge.net/projects/splicing-prediction-pipeline/

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SPiP:剪接预测管道,一个机器学习工具,用于大量检测外显子和内含子变异对mRNA剪接的影响
剪接建模对于解决变异解释的挑战至关重要,因为每个核苷酸变异都可能通过剪接基序(如5 ' /3 '剪接位点、分支位点或剪接调控元件)的破坏/产生而影响前mrna剪接,从而具有致病性。不幸的是,大多数硅工具都集中在特定类型的剪接基序上,这就是为什么我们开发了剪接预测管道(splicing Prediction Pipeline, SPiP),在基于机器学习方法的单一生物信息学分析中,对不同剪接基序的变异效应进行全面评估。我们收集了分布在227个基因序列上的4616个变异,并对它们进行了相应的剪接研究。贝叶斯分析为我们提供了控制变异的数量,即不影响剪接的变异,以模拟高通量测序数据中的大量变异。结果表明,SPiP可以处理剪接改变的多样性,检测剪接变异的灵敏度为83.13%,特异性为99%。以接收算子曲线下面积衡量的总体性能为0.986,优于SpliceAI和SQUIRLS(0.965和0.766)。SPiP使其成为基因组医学时代剪接原性综合预测的独特套件。SPiP可在:https://sourceforge.net/projects/splicing-prediction-pipeline/上获得
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1