{"title":"Generalized Geographically Weighted Regression Model within a Modularized Bayesian Framework.","authors":"Yang Liu, Robert J B Goudie","doi":"10.1214/22-BA1357","DOIUrl":null,"url":null,"abstract":"<p><p>Geographically weighted regression (GWR) models handle geographical dependence through a spatially varying coefficient model and have been widely used in applied science, but its general Bayesian extension is unclear because it involves a weighted log-likelihood which does not imply a probability distribution on data. We present a Bayesian GWR model and show that its essence is dealing with partial misspecification of the model. Current modularized Bayesian inference models accommodate partial misspecification from a single component of the model. We extend these models to handle partial misspecification in more than one component of the model, as required for our Bayesian GWR model. Information from the various spatial locations is manipulated via a geographically weighted kernel and the optimal manipulation is chosen according to a Kullback-Leibler (KL) divergence. We justify the model via an information risk minimization approach and show the consistency of the proposed estimator in terms of a geographically weighted KL divergence.</p>","PeriodicalId":55398,"journal":{"name":"Bayesian Analysis","volume":"-1 -1","pages":"1-36"},"PeriodicalIF":4.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7614111/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bayesian Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-BA1357","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Geographically weighted regression (GWR) models handle geographical dependence through a spatially varying coefficient model and have been widely used in applied science, but its general Bayesian extension is unclear because it involves a weighted log-likelihood which does not imply a probability distribution on data. We present a Bayesian GWR model and show that its essence is dealing with partial misspecification of the model. Current modularized Bayesian inference models accommodate partial misspecification from a single component of the model. We extend these models to handle partial misspecification in more than one component of the model, as required for our Bayesian GWR model. Information from the various spatial locations is manipulated via a geographically weighted kernel and the optimal manipulation is chosen according to a Kullback-Leibler (KL) divergence. We justify the model via an information risk minimization approach and show the consistency of the proposed estimator in terms of a geographically weighted KL divergence.
期刊介绍:
Bayesian Analysis is an electronic journal of the International Society for Bayesian Analysis. It seeks to publish a wide range of articles that demonstrate or discuss Bayesian methods in some theoretical or applied context. The journal welcomes submissions involving presentation of new computational and statistical methods; critical reviews and discussions of existing approaches; historical perspectives; description of important scientific or policy application areas; case studies; and methods for experimental design, data collection, data sharing, or data mining.
Evaluation of submissions is based on importance of content and effectiveness of communication. Discussion papers are typically chosen by the Editor in Chief, or suggested by an Editor, among the regular submissions. In addition, the Journal encourages individual authors to submit manuscripts for consideration as discussion papers.