A model-based approach to multivariate principal component regression: Selecting principal components and estimating standard errors for unstandardized regression coefficients
{"title":"A model-based approach to multivariate principal component regression: Selecting principal components and estimating standard errors for unstandardized regression coefficients","authors":"Fei Gu, Mike W.-L. Cheung","doi":"10.1111/bmsp.12301","DOIUrl":null,"url":null,"abstract":"<p>Principal component regression (PCR) is a popular technique in data analysis and machine learning. However, the technique has two limitations. First, the principal components (PCs) with the largest variances may not be relevant to the outcome variables. Second, the lack of standard error estimates for the unstandardized regression coefficients makes it hard to interpret the results. To address these two limitations, we propose a model-based approach that includes two mean and covariance structure models defined for multivariate PCR. By estimating the defined models, we can obtain inferential information that will allow us to test the explanatory power of individual PCs and compute the standard error estimates for the unstandardized regression coefficients. A real example is used to illustrate our approach, and simulation studies under normality and nonnormality conditions are presented to validate the standard error estimates for the unstandardized regression coefficients. Finally, future research topics are discussed.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Mathematical & Statistical Psychology","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/bmsp.12301","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Principal component regression (PCR) is a popular technique in data analysis and machine learning. However, the technique has two limitations. First, the principal components (PCs) with the largest variances may not be relevant to the outcome variables. Second, the lack of standard error estimates for the unstandardized regression coefficients makes it hard to interpret the results. To address these two limitations, we propose a model-based approach that includes two mean and covariance structure models defined for multivariate PCR. By estimating the defined models, we can obtain inferential information that will allow us to test the explanatory power of individual PCs and compute the standard error estimates for the unstandardized regression coefficients. A real example is used to illustrate our approach, and simulation studies under normality and nonnormality conditions are presented to validate the standard error estimates for the unstandardized regression coefficients. Finally, future research topics are discussed.
期刊介绍:
The British Journal of Mathematical and Statistical Psychology publishes articles relating to areas of psychology which have a greater mathematical or statistical aspect of their argument than is usually acceptable to other journals including:
• mathematical psychology
• statistics
• psychometrics
• decision making
• psychophysics
• classification
• relevant areas of mathematics, computing and computer software
These include articles that address substantitive psychological issues or that develop and extend techniques useful to psychologists. New models for psychological processes, new approaches to existing data, critiques of existing models and improved algorithms for estimating the parameters of a model are examples of articles which may be favoured.