Discriminating Acute Respiratory Distress Syndrome from other forms of respiratory failure via iterative machine learning

Babak Afshin-Pour , Michael Qiu , Shahrzad Hosseini Vajargah , Helen Cheyne , Kevin Ha , Molly Stewart , Jan Horsky , Rachel Aviv , Nasen Zhang , Mangala Narasimhan , John Chelico , Gabriel Musso , Negin Hajizadeh
{"title":"Discriminating Acute Respiratory Distress Syndrome from other forms of respiratory failure via iterative machine learning","authors":"Babak Afshin-Pour ,&nbsp;Michael Qiu ,&nbsp;Shahrzad Hosseini Vajargah ,&nbsp;Helen Cheyne ,&nbsp;Kevin Ha ,&nbsp;Molly Stewart ,&nbsp;Jan Horsky ,&nbsp;Rachel Aviv ,&nbsp;Nasen Zhang ,&nbsp;Mangala Narasimhan ,&nbsp;John Chelico ,&nbsp;Gabriel Musso ,&nbsp;Negin Hajizadeh","doi":"10.1016/j.ibmed.2023.100087","DOIUrl":null,"url":null,"abstract":"<div><p>Acute Respiratory Distress Syndrome (ARDS) is associated with high morbidity and mortality. Identification of ARDS enables lung protective strategies, quality improvement interventions, and clinical trial enrolment, but remains challenging particularly in the first 24 hours of mechanical ventilation. To address this we built an algorithm capable of discriminating ARDS from other similarly presenting disorders immediately following mechanical ventilation. Specifically, a clinical team examined medical records from 1263 ICU-admitted, mechanically ventilated patients, retrospectively assigning each patient a diagnosis of “ARDS” or “non-ARDS” (e.g., pulmonary edema). Exploiting data readily available in the clinical setting, including patient demographics, laboratory test results from before the initiation of mechanical ventilation, and features extracted by natural language processing of radiology reports, we applied an iterative pre-processing and machine learning framework. The resulting model successfully discriminated ARDS from non-ARDS causes of respiratory failure (AUC = 0.85) among patients meeting Berlin criteria for severe hypoxia. This analysis also highlighted novel patient variables that were informative for identifying ARDS in ICU settings.</p></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"7 ","pages":"Article 100087"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9812471/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666521223000017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Acute Respiratory Distress Syndrome (ARDS) is associated with high morbidity and mortality. Identification of ARDS enables lung protective strategies, quality improvement interventions, and clinical trial enrolment, but remains challenging particularly in the first 24 hours of mechanical ventilation. To address this we built an algorithm capable of discriminating ARDS from other similarly presenting disorders immediately following mechanical ventilation. Specifically, a clinical team examined medical records from 1263 ICU-admitted, mechanically ventilated patients, retrospectively assigning each patient a diagnosis of “ARDS” or “non-ARDS” (e.g., pulmonary edema). Exploiting data readily available in the clinical setting, including patient demographics, laboratory test results from before the initiation of mechanical ventilation, and features extracted by natural language processing of radiology reports, we applied an iterative pre-processing and machine learning framework. The resulting model successfully discriminated ARDS from non-ARDS causes of respiratory failure (AUC = 0.85) among patients meeting Berlin criteria for severe hypoxia. This analysis also highlighted novel patient variables that were informative for identifying ARDS in ICU settings.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过迭代机器学习区分急性呼吸窘迫综合征和其他形式的呼吸衰竭
急性呼吸窘迫综合征(ARDS)具有较高的发病率和死亡率。ARDS的识别有助于肺保护策略、质量改善干预措施和临床试验的招募,但仍然具有挑战性,特别是在机械通气的前24小时。为了解决这个问题,我们建立了一个算法,能够在机械通气后立即将ARDS与其他类似症状的疾病区分开来。具体而言,临床小组检查了1263名icu住院机械通气患者的医疗记录,回顾性地为每位患者诊断为“ARDS”或“非ARDS”(例如肺水肿)。利用临床环境中现成的数据,包括患者人口统计数据、机械通气开始前的实验室测试结果,以及通过放射学报告的自然语言处理提取的特征,我们应用了迭代预处理和机器学习框架。该模型成功地在符合严重缺氧柏林标准的患者中区分出ARDS与非ARDS原因的呼吸衰竭(AUC = 0.85)。该分析还强调了新的患者变量,为在ICU环境中识别ARDS提供了信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Intelligence-based medicine
Intelligence-based medicine Health Informatics
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
187 days
期刊最新文献
Artificial intelligence in child development monitoring: A systematic review on usage, outcomes and acceptance Automatic characterization of cerebral MRI images for the detection of autism spectrum disorders DOTnet 2.0: Deep learning network for diffuse optical tomography image reconstruction Artificial intelligence in child development monitoring: A systematic review on usage, outcomes and acceptance Clustering polycystic ovary syndrome laboratory results extracted from a large internet forum with machine learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1