A drug recommendation system based on response prediction: Integrating gene expression and K-mer fragmentation of drug SMILES using LightGBM

Sajid Naveed , Mujtaba Husnain
{"title":"A drug recommendation system based on response prediction: Integrating gene expression and K-mer fragmentation of drug SMILES using LightGBM","authors":"Sajid Naveed ,&nbsp;Mujtaba Husnain","doi":"10.1016/j.ibmed.2025.100206","DOIUrl":null,"url":null,"abstract":"<div><div>Medical experts and physicians examine the gene expression abnormality in glioblastoma (GBM) cancer patients to identify the drug response. The main objective of this research is to build a machine learning (ML) based model for improve the outcome of cancer medication to save the time and effort of medical practitioners. Developing a drug response recommendation system is our goal that uses the gene expression data of cancer cell lines to predict the response of anticancer drugs in terms of half-maximal inhibitory concentration (IC50). Genetic data from a GBM cancer patient is used as input into a system to predict and recommend the response of multiple anticancer drugs in a particular cancer sample. In this research, we used K-mer molecular fragmentation to process drug SMILES in a novel way, which enabled us to build a competent model that provides drug response. We used the Light Gradient Boosting Machine (LightGBM) regression algorithm and Genomics of Drug Sensitivity of Cancer (GDSC) data for this proposed recommendation system. The results showed that all predicted IC50 values are fall within the range of the real values when examining GBM data. Two drugs, temozolomide and carmustine, were predicted with a Mean Squared Error (MSE) of 0.10 and 0.11 respectively, and 0.41 in unseen test samples. These recommended responses were then verified by expert doctors, who confirmed that the responses to these drugs were very close to the actual response. These recommendation are also effective in slowing the growth of these tumors and improving patients quality of life by monitoring medication effects.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"11 ","pages":"Article 100206"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666521225000092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Medical experts and physicians examine the gene expression abnormality in glioblastoma (GBM) cancer patients to identify the drug response. The main objective of this research is to build a machine learning (ML) based model for improve the outcome of cancer medication to save the time and effort of medical practitioners. Developing a drug response recommendation system is our goal that uses the gene expression data of cancer cell lines to predict the response of anticancer drugs in terms of half-maximal inhibitory concentration (IC50). Genetic data from a GBM cancer patient is used as input into a system to predict and recommend the response of multiple anticancer drugs in a particular cancer sample. In this research, we used K-mer molecular fragmentation to process drug SMILES in a novel way, which enabled us to build a competent model that provides drug response. We used the Light Gradient Boosting Machine (LightGBM) regression algorithm and Genomics of Drug Sensitivity of Cancer (GDSC) data for this proposed recommendation system. The results showed that all predicted IC50 values are fall within the range of the real values when examining GBM data. Two drugs, temozolomide and carmustine, were predicted with a Mean Squared Error (MSE) of 0.10 and 0.11 respectively, and 0.41 in unseen test samples. These recommended responses were then verified by expert doctors, who confirmed that the responses to these drugs were very close to the actual response. These recommendation are also effective in slowing the growth of these tumors and improving patients quality of life by monitoring medication effects.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Intelligence-based medicine
Intelligence-based medicine Health Informatics
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
187 days
期刊最新文献
Artificial intelligence and patient care: Perspectives of audiologists and speech-language pathologists Using big data to predict young adult ischemic vs. non-ischemic heart disease risk factors: An artificial intelligence based model Open-source small language models for personal medical assistant chatbots A drug recommendation system based on response prediction: Integrating gene expression and K-mer fragmentation of drug SMILES using LightGBM Optimizing ResNet50 performance using stochastic gradient descent on MRI images for Alzheimer's disease classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1