Variational auto-encoders improve explainability over currently employed heatmap methods for deep learning-based interpretation of the electrocardiogram.

IF 3.9 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS European heart journal. Digital health Pub Date : 2022-12-01 DOI:10.1093/ehjdh/ztac063
Rutger R van de Leur, Rutger J Hassink, René van Es
{"title":"Variational auto-encoders improve explainability over currently employed heatmap methods for deep learning-based interpretation of the electrocardiogram.","authors":"Rutger R van de Leur, Rutger J Hassink, René van Es","doi":"10.1093/ehjdh/ztac063","DOIUrl":null,"url":null,"abstract":"We appreciate the opportunity to address Higaki and Yamaguchi and their detailed commentary on our study. 1 In the referenced study, we show that variational auto-encoders (VAEs), which use deep neural networks (DNNs) to learn the underlying factors of variation in the median beat electrocardiogram (ECG), can be used to provide improved explainability over previous attempts to open the ‘black box’ of ECG-based DNNs using saliency-based heatmaps. There are currently conflicting definitions of explainability and interpretability in the literature and both are used interchangeably","PeriodicalId":72965,"journal":{"name":"European heart journal. Digital health","volume":"3 4","pages":"502-504"},"PeriodicalIF":3.9000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/7b/bc/ztac063.PMC9779792.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European heart journal. Digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ehjdh/ztac063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

We appreciate the opportunity to address Higaki and Yamaguchi and their detailed commentary on our study. 1 In the referenced study, we show that variational auto-encoders (VAEs), which use deep neural networks (DNNs) to learn the underlying factors of variation in the median beat electrocardiogram (ECG), can be used to provide improved explainability over previous attempts to open the ‘black box’ of ECG-based DNNs using saliency-based heatmaps. There are currently conflicting definitions of explainability and interpretability in the literature and both are used interchangeably

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
变分自编码器提高了目前使用的热图方法的可解释性,用于基于深度学习的心电图解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.00
自引率
0.00%
发文量
0
期刊最新文献
Introducing online multi-language video animations to support patients' understanding of cardiac procedures in a high-volume tertiary centre. Deep-learning-driven optical coherence tomography analysis for cardiovascular outcome prediction in patients with acute coronary syndrome. Validation of machine learning-based risk stratification scores for patients with acute coronary syndrome treated with percutaneous coronary intervention. On the detection of acute coronary occlusion with the miniECG. Cardiac anatomic digital twins: findings from a single national centre.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1