Validation of machine learning-based risk stratification scores for patients with acute coronary syndrome treated with percutaneous coronary intervention.

IF 3.9 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS European heart journal. Digital health Pub Date : 2024-09-26 eCollection Date: 2024-11-01 DOI:10.1093/ehjdh/ztae071
Mitchel A Molenaar, Jasper L Selder, Amand F Schmidt, Folkert W Asselbergs, Jelle D Nieuwendijk, Brigitte van Dalfsen, Mark J Schuuring, Berto J Bouma, Steven A J Chamuleau, Niels J Verouden
{"title":"Validation of machine learning-based risk stratification scores for patients with acute coronary syndrome treated with percutaneous coronary intervention.","authors":"Mitchel A Molenaar, Jasper L Selder, Amand F Schmidt, Folkert W Asselbergs, Jelle D Nieuwendijk, Brigitte van Dalfsen, Mark J Schuuring, Berto J Bouma, Steven A J Chamuleau, Niels J Verouden","doi":"10.1093/ehjdh/ztae071","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>This study aimed to validate the machine learning-based Global Registry of Acute Coronary Events (GRACE) 3.0 score and PRAISE (Prediction of Adverse Events following an Acute Coronary Syndrome) in patients with acute coronary syndrome (ACS) treated with percutaneous coronary intervention (PCI) for predicting mortality.</p><p><strong>Methods and results: </strong>Data of consecutive patients with ACS treated with PCI in a tertiary centre in the Netherlands between 2014 and 2021 were used for external validation. The GRACE 3.0 score for predicting in-hospital mortality was evaluated in 2759 patients with non-ST-elevation acute coronary syndrome (NSTE-ACS) treated with PCI. The PRAISE score for predicting one-year mortality was evaluated in 4347 patients with ACS treated with PCI. Both risk scores were compared with the GRACE 2.0 score. The GRACE 3.0 score showed excellent discrimination [c-statistic 0.90 (95% CI 0.84, 0.94)] for predicting in-hospital mortality, with well-calibrated predictions (calibration-in-the large [CIL] -0.19 [95% CI -0.45, 0.07]). The PRAISE score demonstrated moderate discrimination [c-statistic 0.75 (95% CI 0.70, 0.80)] and overestimated the one-year risk of mortality [CIL -0.56 (95% CI -0.73, -0.39)]. Decision curve analysis demonstrated that the GRACE 3.0 score offered improved risk prediction compared with the GRACE 2.0 score, while the PRAISE score did not.</p><p><strong>Conclusion: </strong>This study in ACS patients treated with PCI provides suggestive evidence that the GRACE 3.0 score effectively predicts in-hospital mortality beyond the GRACE 2.0 score. The PRAISE score demonstrated limited potential for predicting one-year mortality risk. Further external validation studies in larger cohorts including patients without PCI are warranted.</p>","PeriodicalId":72965,"journal":{"name":"European heart journal. Digital health","volume":"5 6","pages":"702-711"},"PeriodicalIF":3.9000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11570391/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European heart journal. Digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ehjdh/ztae071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Aims: This study aimed to validate the machine learning-based Global Registry of Acute Coronary Events (GRACE) 3.0 score and PRAISE (Prediction of Adverse Events following an Acute Coronary Syndrome) in patients with acute coronary syndrome (ACS) treated with percutaneous coronary intervention (PCI) for predicting mortality.

Methods and results: Data of consecutive patients with ACS treated with PCI in a tertiary centre in the Netherlands between 2014 and 2021 were used for external validation. The GRACE 3.0 score for predicting in-hospital mortality was evaluated in 2759 patients with non-ST-elevation acute coronary syndrome (NSTE-ACS) treated with PCI. The PRAISE score for predicting one-year mortality was evaluated in 4347 patients with ACS treated with PCI. Both risk scores were compared with the GRACE 2.0 score. The GRACE 3.0 score showed excellent discrimination [c-statistic 0.90 (95% CI 0.84, 0.94)] for predicting in-hospital mortality, with well-calibrated predictions (calibration-in-the large [CIL] -0.19 [95% CI -0.45, 0.07]). The PRAISE score demonstrated moderate discrimination [c-statistic 0.75 (95% CI 0.70, 0.80)] and overestimated the one-year risk of mortality [CIL -0.56 (95% CI -0.73, -0.39)]. Decision curve analysis demonstrated that the GRACE 3.0 score offered improved risk prediction compared with the GRACE 2.0 score, while the PRAISE score did not.

Conclusion: This study in ACS patients treated with PCI provides suggestive evidence that the GRACE 3.0 score effectively predicts in-hospital mortality beyond the GRACE 2.0 score. The PRAISE score demonstrated limited potential for predicting one-year mortality risk. Further external validation studies in larger cohorts including patients without PCI are warranted.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习的急性冠状动脉综合征经皮冠状动脉介入治疗患者风险分层评分的验证。
目的:本研究旨在验证基于机器学习的全球急性冠状动脉事件登记(GRACE)3.0评分和PRAISE(急性冠状动脉综合征不良事件预测)在接受经皮冠状动脉介入治疗(PCI)的急性冠状动脉综合征(ACS)患者中预测死亡率的效果:2014年至2021年期间在荷兰一家三级中心接受PCI治疗的连续ACS患者的数据用于外部验证。在2759名接受PCI治疗的非ST段抬高型急性冠状动脉综合征(NSTE-ACS)患者中评估了预测院内死亡率的GRACE 3.0评分。对 4347 名接受 PCI 治疗的 ACS 患者进行了预测一年死亡率的 PRAISE 评分评估。两种风险评分均与 GRACE 2.0 评分进行了比较。GRACE 3.0 评分在预测院内死亡率方面显示出极佳的区分度[c 统计量 0.90 (95% CI 0.84, 0.94)],预测结果校准良好(大校准 [CIL] -0.19 [95% CI -0.45, 0.07])。PRAISE 评分显示出中等程度的区分度[c 统计量 0.75 (95% CI 0.70, 0.80)],并高估了一年的死亡风险[CIL -0.56 (95% CI -0.73, -0.39)]。决策曲线分析表明,与 GRACE 2.0 评分相比,GRACE 3.0 评分能更好地预测风险,而 PRAISE 评分则不能:这项针对接受 PCI 治疗的 ACS 患者的研究提供了提示性证据,表明 GRACE 3.0 评分能有效预测院内死亡率,超过了 GRACE 2.0 评分。PRAISE 评分在预测一年死亡率风险方面的潜力有限。有必要在更大的队列(包括未行 PCI 的患者)中开展进一步的外部验证研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.00
自引率
0.00%
发文量
0
期刊最新文献
Introducing online multi-language video animations to support patients' understanding of cardiac procedures in a high-volume tertiary centre. Deep-learning-driven optical coherence tomography analysis for cardiovascular outcome prediction in patients with acute coronary syndrome. Validation of machine learning-based risk stratification scores for patients with acute coronary syndrome treated with percutaneous coronary intervention. On the detection of acute coronary occlusion with the miniECG. Cardiac anatomic digital twins: findings from a single national centre.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1