{"title":"Deep-learning-driven optical coherence tomography analysis for cardiovascular outcome prediction in patients with acute coronary syndrome.","authors":"Tomoyo Hamana, Makoto Nishimori, Satoki Shibata, Hiroyuki Kawamori, Takayoshi Toba, Takashi Hiromasa, Shunsuke Kakizaki, Satoru Sasaki, Hiroyuki Fujii, Yuto Osumi, Seigo Iwane, Tetsuya Yamamoto, Shota Naniwa, Yuki Sakamoto, Yuta Fukuishi, Koshi Matsuhama, Hiroshi Tsunamoto, Hiroya Okamoto, Kotaro Higuchi, Tatsuya Kitagawa, Masakazu Shinohara, Koji Kuroda, Masamichi Iwasaki, Amane Kozuki, Junya Shite, Tomofumi Takaya, Ken-Ichi Hirata, Hiromasa Otake","doi":"10.1093/ehjdh/ztae067","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Optical coherence tomography (OCT) can identify high-risk plaques indicative of worsening prognosis in patients with acute coronary syndrome (ACS). However, manual OCT analysis has several limitations. In this study, we aim to construct a deep-learning model capable of automatically predicting ACS prognosis from patient OCT images following percutaneous coronary intervention (PCI).</p><p><strong>Methods and results: </strong>Post-PCI OCT images from 418 patients with ACS were input into a deep-learning model comprising a convolutional neural network (CNN) and transformer. The primary endpoint was target vessel failure (TVF). Model performances were evaluated using Harrell's <i>C</i>-index and compared against conventional models based on human observation of quantitative (minimum lumen area, minimum stent area, average reference lumen area, stent expansion ratio, and lesion length) and qualitative (irregular protrusion, stent thrombus, malapposition, major stent edge dissection, and thin-cap fibroatheroma) factors. GradCAM activation maps were created after extracting attention layers by using the transformer architecture. A total of 60 patients experienced TVF during follow-up (median 961 days). The <i>C</i>-index for predicting TVF was 0.796 in the deep-learning model, which was significantly higher than that of the conventional model comprising only quantitative factors (<i>C</i>-index: 0.640) and comparable to that of the conventional model, including both quantitative and qualitative factors (<i>C</i>-index: 0.789). GradCAM heat maps revealed high activation corresponding to well-known high-risk OCT features.</p><p><strong>Conclusion: </strong>The CNN and transformer-based deep-learning model enabled fully automatic prognostic prediction in patients with ACS, with a predictive ability comparable to a conventional survival model using manual human analysis.</p><p><strong>Clinical trial registration: </strong>The study was registered in the University Hospital Medical Information Network Clinical Trial Registry (UMIN000049237).</p>","PeriodicalId":72965,"journal":{"name":"European heart journal. Digital health","volume":"5 6","pages":"692-701"},"PeriodicalIF":3.9000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11570387/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European heart journal. Digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ehjdh/ztae067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Aims: Optical coherence tomography (OCT) can identify high-risk plaques indicative of worsening prognosis in patients with acute coronary syndrome (ACS). However, manual OCT analysis has several limitations. In this study, we aim to construct a deep-learning model capable of automatically predicting ACS prognosis from patient OCT images following percutaneous coronary intervention (PCI).
Methods and results: Post-PCI OCT images from 418 patients with ACS were input into a deep-learning model comprising a convolutional neural network (CNN) and transformer. The primary endpoint was target vessel failure (TVF). Model performances were evaluated using Harrell's C-index and compared against conventional models based on human observation of quantitative (minimum lumen area, minimum stent area, average reference lumen area, stent expansion ratio, and lesion length) and qualitative (irregular protrusion, stent thrombus, malapposition, major stent edge dissection, and thin-cap fibroatheroma) factors. GradCAM activation maps were created after extracting attention layers by using the transformer architecture. A total of 60 patients experienced TVF during follow-up (median 961 days). The C-index for predicting TVF was 0.796 in the deep-learning model, which was significantly higher than that of the conventional model comprising only quantitative factors (C-index: 0.640) and comparable to that of the conventional model, including both quantitative and qualitative factors (C-index: 0.789). GradCAM heat maps revealed high activation corresponding to well-known high-risk OCT features.
Conclusion: The CNN and transformer-based deep-learning model enabled fully automatic prognostic prediction in patients with ACS, with a predictive ability comparable to a conventional survival model using manual human analysis.
Clinical trial registration: The study was registered in the University Hospital Medical Information Network Clinical Trial Registry (UMIN000049237).