Yongsheng Wang, Huihui Wang, Huiyuan Wang, Ruifan Zhou, Ji Wu, Zekun Zhang, Yandong Jin, Tao Li, Markus V Kohnen, Xuqing Liu, Wentao Wei, Kai Chen, Yubang Gao, Jiazhi Ding, Hangxiao Zhang, Bo Liu, Chentao Lin, Lianfeng Gu
{"title":"Multi-omics of Circular RNAs and Their Responses to Hormones in Moso Bamboo (Phyllostachys edulis).","authors":"Yongsheng Wang, Huihui Wang, Huiyuan Wang, Ruifan Zhou, Ji Wu, Zekun Zhang, Yandong Jin, Tao Li, Markus V Kohnen, Xuqing Liu, Wentao Wei, Kai Chen, Yubang Gao, Jiazhi Ding, Hangxiao Zhang, Bo Liu, Chentao Lin, Lianfeng Gu","doi":"10.1016/j.gpb.2023.01.007","DOIUrl":null,"url":null,"abstract":"<p><p>Circular RNAs (circRNAs) are endogenous non-coding RNAs with covalently closed structures, which have important functions in plants. However, their biogenesis, degradation, and function upon treatment with gibberellins (GAs) and auxins (1-naphthaleneacetic acid, NAA) remain unknown. Here, we systematically identified and characterized the expression patterns, evolutionary conservation, genomic features, and internal structures of circRNAs using RNase R-treated libraries from moso bamboo (Phyllostachys edulis) seedlings. Moreover, we investigated the biogenesis of circRNAs dependent on both cis- and trans-regulation. We explored the function of circRNAs, including their roles in regulating microRNA (miRNA)-related genes and modulating the alternative splicing of their linear counterparts. Importantly, we developed a customized degradome sequencing approach to detect miRNA-mediated cleavage of circRNAs. Finally, we presented a comprehensive view of the participation of circRNAs in the regulation of hormone metabolism upon treatment of bamboo seedlings with GA and NAA. Collectively, our study provides insights into the biogenesis, function, and miRNA-mediated degradation of circRNAs in moso bamboo.</p>","PeriodicalId":12528,"journal":{"name":"Genomics, Proteomics & Bioinformatics","volume":null,"pages":null},"PeriodicalIF":11.5000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10787125/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics, Proteomics & Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.gpb.2023.01.007","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/2/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Circular RNAs (circRNAs) are endogenous non-coding RNAs with covalently closed structures, which have important functions in plants. However, their biogenesis, degradation, and function upon treatment with gibberellins (GAs) and auxins (1-naphthaleneacetic acid, NAA) remain unknown. Here, we systematically identified and characterized the expression patterns, evolutionary conservation, genomic features, and internal structures of circRNAs using RNase R-treated libraries from moso bamboo (Phyllostachys edulis) seedlings. Moreover, we investigated the biogenesis of circRNAs dependent on both cis- and trans-regulation. We explored the function of circRNAs, including their roles in regulating microRNA (miRNA)-related genes and modulating the alternative splicing of their linear counterparts. Importantly, we developed a customized degradome sequencing approach to detect miRNA-mediated cleavage of circRNAs. Finally, we presented a comprehensive view of the participation of circRNAs in the regulation of hormone metabolism upon treatment of bamboo seedlings with GA and NAA. Collectively, our study provides insights into the biogenesis, function, and miRNA-mediated degradation of circRNAs in moso bamboo.
期刊介绍:
Genomics, Proteomics and Bioinformatics (GPB) is the official journal of the Beijing Institute of Genomics, Chinese Academy of Sciences / China National Center for Bioinformation and Genetics Society of China. It aims to disseminate new developments in the field of omics and bioinformatics, publish high-quality discoveries quickly, and promote open access and online publication. GPB welcomes submissions in all areas of life science, biology, and biomedicine, with a focus on large data acquisition, analysis, and curation. Manuscripts covering omics and related bioinformatics topics are particularly encouraged. GPB is indexed/abstracted by PubMed/MEDLINE, PubMed Central, Scopus, BIOSIS Previews, Chemical Abstracts, CSCD, among others.