{"title":"Comparison of Characterization in Two-Dimensional and Three-Dimensional Canine Mammary Gland Tumor Cell Models.","authors":"Tomohiro Osaki, Yuji Sunden, Katsuhiko Warita, Yoshiharu Okamoto","doi":"10.33160/yam.2023.02.002","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Canine mammary gland tumors can be used as predictive models for human breast cancer. There are several types of microRNAs common in human breast cancer and canine mammary gland tumors. The functions of microRNAs in canine mammary gland tumors are not well understood.</p><p><strong>Methods: </strong>We compared the characterization of microRNA expression in two-dimensional and three-dimensional canine mammary gland tumor cell models. We evaluated the differences between two- and three-dimensional cultured canine mammary gland tumor SNP cells by assessing microRNA expression levels, morphology, drug sensitivity, and hypoxia.</p><p><strong>Results: </strong>The expression of microRNA-210 in the three-dimensional-SNP cells was 10.19 times higher than that in the two-dimensional-SNP cells. The intracellular concentrations of doxorubicin in the two- and three-dimensional-SNP cells were 0.330 ± 0.013 and 0.290 ± 0.048 nM/mg protein, respectively. The IC<sub>50</sub> values of doxorubicin for the two- and three-dimensional-SNP cells were 5.2 and 1.6 μM, respectively. Fluorescence of the hypoxia probe, LOX-1, was observed inside the sphere of three-dimensional-SNP cells without echinomycin but not in two-dimensional-SNP cells. The three-dimensional-SNP cells treated with echinomycin showed weak LOX-1 fluorescence.</p><p><strong>Conclusion: </strong>The present study showed a clear difference in microRNA expression levels in cells cultured in a two-dimensional adherent versus a three-dimensional spheroid model.</p>","PeriodicalId":23795,"journal":{"name":"Yonago acta medica","volume":"66 1","pages":"7-18"},"PeriodicalIF":0.9000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9937961/pdf/yam-66-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Yonago acta medica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.33160/yam.2023.02.002","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Canine mammary gland tumors can be used as predictive models for human breast cancer. There are several types of microRNAs common in human breast cancer and canine mammary gland tumors. The functions of microRNAs in canine mammary gland tumors are not well understood.
Methods: We compared the characterization of microRNA expression in two-dimensional and three-dimensional canine mammary gland tumor cell models. We evaluated the differences between two- and three-dimensional cultured canine mammary gland tumor SNP cells by assessing microRNA expression levels, morphology, drug sensitivity, and hypoxia.
Results: The expression of microRNA-210 in the three-dimensional-SNP cells was 10.19 times higher than that in the two-dimensional-SNP cells. The intracellular concentrations of doxorubicin in the two- and three-dimensional-SNP cells were 0.330 ± 0.013 and 0.290 ± 0.048 nM/mg protein, respectively. The IC50 values of doxorubicin for the two- and three-dimensional-SNP cells were 5.2 and 1.6 μM, respectively. Fluorescence of the hypoxia probe, LOX-1, was observed inside the sphere of three-dimensional-SNP cells without echinomycin but not in two-dimensional-SNP cells. The three-dimensional-SNP cells treated with echinomycin showed weak LOX-1 fluorescence.
Conclusion: The present study showed a clear difference in microRNA expression levels in cells cultured in a two-dimensional adherent versus a three-dimensional spheroid model.
期刊介绍:
Yonago Acta Medica (YAM) is an electronic journal specializing in medical sciences, published by Tottori University Medical Press, 86 Nishi-cho, Yonago 683-8503, Japan.
The subject areas cover the following: molecular/cell biology; biochemistry; basic medicine; clinical medicine; veterinary medicine; clinical nutrition and food sciences; medical engineering; nursing sciences; laboratory medicine; clinical psychology; medical education.
Basically, contributors are limited to members of Tottori University and Tottori University Hospital. Researchers outside the above-mentioned university community may also submit papers on the recommendation of a professor, an associate professor, or a junior associate professor at this university community.
Articles are classified into four categories: review articles, original articles, patient reports, and short communications.