{"title":"The “Agent-Based Modeling for Human Behavior” Special Issue","authors":"Soo Ling Lim;Peter J. Bentley","doi":"10.1162/artl_e_00394","DOIUrl":null,"url":null,"abstract":"If human societies are so complex, then how can we hope to understand them? Artificial Life gives us one answer. The field of Artificial Life comprises a diverse set of introspective studies that largely ask the same questions, albeit from many different perspectives: Why are we here? Who are we? Why do we behave as we do? Starting with the origins of life provides us with fascinating answers to some of these questions. However, some researchers choose to bring their studies closer to the present day. We are, after all, human. It has been a few billion years since our ancestors were self-replicating molecules. Thus more direct studies of ourselves and our human societies can reveal truths that may lead to practical knowledge. The articles in this special issue bring together scientists who choose to perform this kind of research. Expanded from submissions to our annual Agent-Based Modelling of Human Behaviour Workshop, the studies share similar methods, all using variations of agent-based modeling (ABM) to ask their own what-if questions. As guest editors, we believe such collections help bring together and enhance such research by sharing ideas. While ABM research—out of necessity—is often highly specialized toward the hypotheses and phenomena under study, the research methodology is shared by all. We formulate our hypothesis, develop our agent-based model of the relevant aspects of reality, and run experiments to gather evidence that may support or refute the hypothesis. An experimental model that supports the hypothesis may not prove that reality follows this approach or agrees with this result, but it indicates that there exists a specific set of conditions that, if found to be true elsewhere, may produce the same result. Modeling tells us about trends, about possible likelihoods. Our ABMs show us what will result if our assumptions are valid and why, whether we are examining civil violence, app stores, the economy, fish markets, language evolution, or energy consumption. When we study human societies, ABMs are the tools of choice for obvious reasons: It is not ethical or safe to play what-if experiments with ourselves. The researchers in this special issue demonstrate the exciting potential in ABM. We can create our own safe virtual worlds and make discoveries that enlighten us about ourselves.","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":"29 1","pages":"1-2"},"PeriodicalIF":1.6000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Life","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10301993/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
If human societies are so complex, then how can we hope to understand them? Artificial Life gives us one answer. The field of Artificial Life comprises a diverse set of introspective studies that largely ask the same questions, albeit from many different perspectives: Why are we here? Who are we? Why do we behave as we do? Starting with the origins of life provides us with fascinating answers to some of these questions. However, some researchers choose to bring their studies closer to the present day. We are, after all, human. It has been a few billion years since our ancestors were self-replicating molecules. Thus more direct studies of ourselves and our human societies can reveal truths that may lead to practical knowledge. The articles in this special issue bring together scientists who choose to perform this kind of research. Expanded from submissions to our annual Agent-Based Modelling of Human Behaviour Workshop, the studies share similar methods, all using variations of agent-based modeling (ABM) to ask their own what-if questions. As guest editors, we believe such collections help bring together and enhance such research by sharing ideas. While ABM research—out of necessity—is often highly specialized toward the hypotheses and phenomena under study, the research methodology is shared by all. We formulate our hypothesis, develop our agent-based model of the relevant aspects of reality, and run experiments to gather evidence that may support or refute the hypothesis. An experimental model that supports the hypothesis may not prove that reality follows this approach or agrees with this result, but it indicates that there exists a specific set of conditions that, if found to be true elsewhere, may produce the same result. Modeling tells us about trends, about possible likelihoods. Our ABMs show us what will result if our assumptions are valid and why, whether we are examining civil violence, app stores, the economy, fish markets, language evolution, or energy consumption. When we study human societies, ABMs are the tools of choice for obvious reasons: It is not ethical or safe to play what-if experiments with ourselves. The researchers in this special issue demonstrate the exciting potential in ABM. We can create our own safe virtual worlds and make discoveries that enlighten us about ourselves.
期刊介绍:
Artificial Life, launched in the fall of 1993, has become the unifying forum for the exchange of scientific information on the study of artificial systems that exhibit the behavioral characteristics of natural living systems, through the synthesis or simulation using computational (software), robotic (hardware), and/or physicochemical (wetware) means. Each issue features cutting-edge research on artificial life that advances the state-of-the-art of our knowledge about various aspects of living systems such as:
Artificial chemistry and the origins of life
Self-assembly, growth, and development
Self-replication and self-repair
Systems and synthetic biology
Perception, cognition, and behavior
Embodiment and enactivism
Collective behaviors of swarms
Evolutionary and ecological dynamics
Open-endedness and creativity
Social organization and cultural evolution
Societal and technological implications
Philosophy and aesthetics
Applications to biology, medicine, business, education, or entertainment.