Guideless Artificial Life Model for Reproduction, Development, and Interactions.

IF 1.6 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Artificial Life Pub Date : 2025-01-30 DOI:10.1162/artl_a_00466
Keishu Utimula
{"title":"Guideless Artificial Life Model for Reproduction, Development, and Interactions.","authors":"Keishu Utimula","doi":"10.1162/artl_a_00466","DOIUrl":null,"url":null,"abstract":"<p><p>Reproduction, development, and individual interactions are vital yet complex natural processes. Tierra (an ALife model proposed by Thomas Ray) and cellular automata, which can manage these aspects in a complex manner, are significantly limited in their ability to express morphology and behavior. In contrast, the virtual creatures proposed by Karl Sims have a considerably higher degree of freedom in terms of morphology and behavior. However, they also exhibit a limited capacity for processes like reproduction, development, and individual interactions. In addition, they employ genetic algorithms, which can result in a loss of biological diversity, as their implementation necessitates predefining a fitness function. Contrarily, the evolution of natural life is determined by mutation and natural selection, rather than by a human-defined fitness function. This study carefully extracts the characteristics of these models to propose a new Artificial Life model that can simulate reproduction, development, and individual interactions while exhibiting a high expressive power for morphology and behavior. The model is based on the concept of incorporating Tierra and cellular automata mechanisms into a cell that moves freely in 3-D space. In this model, no predefined fitness function or form that qualifies as a living creature exists. In other words, this approach can be rephrased as searching for persistent patterns, which is similar to the approach of Conway's Game of Life. The primary objective of this study was to conduct a proof-of-concept demonstration to showcase the capabilities of this model. Guideless simulation by the proposed model using mutation and natural selection resulted in the formation of two types of creatures-dumbbell shaped and reticulated. These creatures exhibit intriguing features, exploiting the degrees of freedom inherent to the proposed model. Particularly noteworthy is their unique method of reproduction, which bears a striking resemblance to that of real organisms. These results reinforce the potential of this approach in modeling intricate processes observed in actual organisms and its ability to generate virtual creatures with intriguing ecologies.</p>","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":" ","pages":"1-34"},"PeriodicalIF":1.6000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Life","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/artl_a_00466","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Reproduction, development, and individual interactions are vital yet complex natural processes. Tierra (an ALife model proposed by Thomas Ray) and cellular automata, which can manage these aspects in a complex manner, are significantly limited in their ability to express morphology and behavior. In contrast, the virtual creatures proposed by Karl Sims have a considerably higher degree of freedom in terms of morphology and behavior. However, they also exhibit a limited capacity for processes like reproduction, development, and individual interactions. In addition, they employ genetic algorithms, which can result in a loss of biological diversity, as their implementation necessitates predefining a fitness function. Contrarily, the evolution of natural life is determined by mutation and natural selection, rather than by a human-defined fitness function. This study carefully extracts the characteristics of these models to propose a new Artificial Life model that can simulate reproduction, development, and individual interactions while exhibiting a high expressive power for morphology and behavior. The model is based on the concept of incorporating Tierra and cellular automata mechanisms into a cell that moves freely in 3-D space. In this model, no predefined fitness function or form that qualifies as a living creature exists. In other words, this approach can be rephrased as searching for persistent patterns, which is similar to the approach of Conway's Game of Life. The primary objective of this study was to conduct a proof-of-concept demonstration to showcase the capabilities of this model. Guideless simulation by the proposed model using mutation and natural selection resulted in the formation of two types of creatures-dumbbell shaped and reticulated. These creatures exhibit intriguing features, exploiting the degrees of freedom inherent to the proposed model. Particularly noteworthy is their unique method of reproduction, which bears a striking resemblance to that of real organisms. These results reinforce the potential of this approach in modeling intricate processes observed in actual organisms and its ability to generate virtual creatures with intriguing ecologies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Artificial Life
Artificial Life 工程技术-计算机:理论方法
CiteScore
4.70
自引率
7.70%
发文量
38
审稿时长
>12 weeks
期刊介绍: Artificial Life, launched in the fall of 1993, has become the unifying forum for the exchange of scientific information on the study of artificial systems that exhibit the behavioral characteristics of natural living systems, through the synthesis or simulation using computational (software), robotic (hardware), and/or physicochemical (wetware) means. Each issue features cutting-edge research on artificial life that advances the state-of-the-art of our knowledge about various aspects of living systems such as: Artificial chemistry and the origins of life Self-assembly, growth, and development Self-replication and self-repair Systems and synthetic biology Perception, cognition, and behavior Embodiment and enactivism Collective behaviors of swarms Evolutionary and ecological dynamics Open-endedness and creativity Social organization and cultural evolution Societal and technological implications Philosophy and aesthetics Applications to biology, medicine, business, education, or entertainment.
期刊最新文献
Continuous Evolution in the NK Treadmill Model. Guideless Artificial Life Model for Reproduction, Development, and Interactions. Modeling the Mutation and Competition of Certain Nutrient-Producing Protocells by Means of Specific Turing Machines. Complexity, Artificial Life, and Artificial Intelligence. Neurons as Autoencoders.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1