Efficacy of ketamine, propofol, and dexmedetomidine for anesthesia in electroconvulsive therapy in treatment-resistant major depressive disorder patients: a double-blind randomized clinical trial.
Hesameddin Modir, Behnam Mahmoodiyeh, Mehran Shayganfard, Ayda Abdus, Amir Almasi-Hashiani
{"title":"Efficacy of ketamine, propofol, and dexmedetomidine for anesthesia in electroconvulsive therapy in treatment-resistant major depressive disorder patients: a double-blind randomized clinical trial.","authors":"Hesameddin Modir, Behnam Mahmoodiyeh, Mehran Shayganfard, Ayda Abdus, Amir Almasi-Hashiani","doi":"10.4103/2045-9912.350860","DOIUrl":null,"url":null,"abstract":"<p><p>Electroconvulsive therapy (ECT) is one of the therapeutic opportunities for patients with psychological disorders when they may decline to take medication. We sought to systematically compare the anesthetic efficacy of ketamine, propofol, and dexmedetomidine for electroconvulsive therapy in treatment-resistant major depressive disorder patients. This double-blind trial enrolled treatment-resistant major depressive disorder patients (n = 85) who had been hospitalized for ECT in the Amir Kabir Hospital's psychiatric ward (Arak, Iran). The ketamine, propofol, and dexmedetomidine groups received a dose of 0.2 μg/kg ketamine, 1.5 mg/kg propofol, and 0.8 mg/kg dexmedetomidine, respectively. In all intervention groups, 10 mL of interventional drugs was injected intravenously for 10 minutes, and in the placebo group, 10 mL of normal saline was given over the same period. The dexmedetomidine group's blood pressure was revealed comparatively lower at all times. Dexmedetomidine-treated patients showed their marked satisfaction, while those treated with propofol had shorter recovery time, shorter seizure duration, and shorter time to achieve an Aldrete score of 9-10 and increased relaxation, and next dexmedetomidine produced deeper relaxation. Propofol could shorten recovery time and seizure duration, and enhance relaxation, while dexmedetomidine was associated with higher patient satisfaction. Considering that any anesthetic which does not shorten seizure duration may serve efficiently for ECT and that ketamine-treated patients had more prolonged seizure duration, the preferred drug can hence be considered from various angles, thereby offering anesthetic agents with highly favorable efficacy in treatment-resistant major depressive disorder patients needing ECT. The drug choice thus depends on physical conditions, underlying diseases, and psychiatrist consultation.</p>","PeriodicalId":18559,"journal":{"name":"Medical Gas Research","volume":"13 3","pages":"112-117"},"PeriodicalIF":3.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/85/ec/MGR-13-112.PMC9979203.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Gas Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/2045-9912.350860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Electroconvulsive therapy (ECT) is one of the therapeutic opportunities for patients with psychological disorders when they may decline to take medication. We sought to systematically compare the anesthetic efficacy of ketamine, propofol, and dexmedetomidine for electroconvulsive therapy in treatment-resistant major depressive disorder patients. This double-blind trial enrolled treatment-resistant major depressive disorder patients (n = 85) who had been hospitalized for ECT in the Amir Kabir Hospital's psychiatric ward (Arak, Iran). The ketamine, propofol, and dexmedetomidine groups received a dose of 0.2 μg/kg ketamine, 1.5 mg/kg propofol, and 0.8 mg/kg dexmedetomidine, respectively. In all intervention groups, 10 mL of interventional drugs was injected intravenously for 10 minutes, and in the placebo group, 10 mL of normal saline was given over the same period. The dexmedetomidine group's blood pressure was revealed comparatively lower at all times. Dexmedetomidine-treated patients showed their marked satisfaction, while those treated with propofol had shorter recovery time, shorter seizure duration, and shorter time to achieve an Aldrete score of 9-10 and increased relaxation, and next dexmedetomidine produced deeper relaxation. Propofol could shorten recovery time and seizure duration, and enhance relaxation, while dexmedetomidine was associated with higher patient satisfaction. Considering that any anesthetic which does not shorten seizure duration may serve efficiently for ECT and that ketamine-treated patients had more prolonged seizure duration, the preferred drug can hence be considered from various angles, thereby offering anesthetic agents with highly favorable efficacy in treatment-resistant major depressive disorder patients needing ECT. The drug choice thus depends on physical conditions, underlying diseases, and psychiatrist consultation.
期刊介绍:
Medical Gas Research is an open access journal which publishes basic, translational, and clinical research focusing on the neurobiology as well as multidisciplinary aspects of medical gas research and their applications to related disorders. The journal covers all areas of medical gas research, but also has several special sections. Authors can submit directly to these sections, whose peer-review process is overseen by our distinguished Section Editors: Inert gases - Edited by Xuejun Sun and Mark Coburn, Gasotransmitters - Edited by Atsunori Nakao and John Calvert, Oxygen and diving medicine - Edited by Daniel Rossignol and Ke Jian Liu, Anesthetic gases - Edited by Richard Applegate and Zhongcong Xie, Medical gas in other fields of biology - Edited by John Zhang. Medical gas is a large family including oxygen, hydrogen, carbon monoxide, carbon dioxide, nitrogen, xenon, hydrogen sulfide, nitrous oxide, carbon disulfide, argon, helium and other noble gases. These medical gases are used in multiple fields of clinical practice and basic science research including anesthesiology, hyperbaric oxygen medicine, diving medicine, internal medicine, emergency medicine, surgery, and many basic sciences disciplines such as physiology, pharmacology, biochemistry, microbiology and neurosciences. Due to the unique nature of medical gas practice, Medical Gas Research will serve as an information platform for educational and technological advances in the field of medical gas.