Numerical simulation of mass transfer enhancement in liquid metal batteries by means of electro-vortex flow

IF 5.4 Q2 CHEMISTRY, PHYSICAL Journal of Power Sources Advances Pub Date : 2020-02-01 DOI:10.1016/j.powera.2020.100004
Norbert Weber , Michael Nimtz , Paolo Personnettaz , Tom Weier , Donald Sadoway
{"title":"Numerical simulation of mass transfer enhancement in liquid metal batteries by means of electro-vortex flow","authors":"Norbert Weber ,&nbsp;Michael Nimtz ,&nbsp;Paolo Personnettaz ,&nbsp;Tom Weier ,&nbsp;Donald Sadoway","doi":"10.1016/j.powera.2020.100004","DOIUrl":null,"url":null,"abstract":"<div><p>Mass transfer is of paramount importance for an efficient operation of liquid metal batteries. We show for the first time that electrodynamically driven flow can indeed improve mixing of liquid electrodes, and reduces concentration polarisation substantially. Simulating the discharge of a realistic Li<span><math><mrow><mo>|</mo><mo>|</mo></mrow></math></span>Bi cell at 1 A/cm<sup>2</sup>, the corresponding overpotential reduces by up to 62%. Moreover, the formation of intermetallic phases is delayed, which improves capacity usage. Finally, we demonstrate that vertical magnetic fields – which are originating from external sources – change the flow structure entirely, and will homogenise the positive electrode even better.</p></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"1 ","pages":"Article 100004"},"PeriodicalIF":5.4000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.powera.2020.100004","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666248520300044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 21

Abstract

Mass transfer is of paramount importance for an efficient operation of liquid metal batteries. We show for the first time that electrodynamically driven flow can indeed improve mixing of liquid electrodes, and reduces concentration polarisation substantially. Simulating the discharge of a realistic Li||Bi cell at 1 A/cm2, the corresponding overpotential reduces by up to 62%. Moreover, the formation of intermetallic phases is delayed, which improves capacity usage. Finally, we demonstrate that vertical magnetic fields – which are originating from external sources – change the flow structure entirely, and will homogenise the positive electrode even better.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电涡流增强液态金属电池传质的数值模拟
传质对液态金属电池的高效运行至关重要。我们首次表明,电动力驱动的流动确实可以改善液体电极的混合,并大大减少浓度极化。模拟实际锂铋电池在1 a /cm2下的放电,相应的过电位降低高达62%。此外,延迟了金属间相的形成,提高了容量利用率。最后,我们证明了垂直磁场——来自外部源——完全改变了流动结构,并将更好地使正极均匀化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
18
审稿时长
64 days
期刊最新文献
Formulating PEO-polycarbonate blends as solid polymer electrolytes by solvent-free extrusion Enhancing performance and sustainability of lithium manganese oxide cathodes with a poly(ionic liquid) binder and ionic liquid electrolyte Enhancing the stability of sodium-ion capacitors by introducing glyoxylic-acetal based electrolyte The implementation of a voltage-based tunneling mechanism in aging models for lithium-ion batteries Electronic structure evolution upon lithiation: A Li K-edge study of silicon oxide anode through X-ray Raman spectroscopy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1