Phillip M Johansen, Frank A Trujillo, Vivian Hagerty, Tessa Harland, Gregory Davis, Julie G Pilitsis
{"title":"Establishing Minimal Clinically Important Difference in Sleep Outcomes after Spinal Cord Stimulation in Patients with Chronic Pain Disorders.","authors":"Phillip M Johansen, Frank A Trujillo, Vivian Hagerty, Tessa Harland, Gregory Davis, Julie G Pilitsis","doi":"10.1159/000527257","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>As one of the most common medical conditions for which patients seek medical care, chronic pain can be debilitating. The relationship between chronic pain and sleep is thought to be bidirectional, suggesting that treatment of one can be beneficial to the other. There is mounting evidence that spinal cord stimulation (SCS) improves aspects of sleep. How meaningful that is to patients' lives has not been ascertained.</p><p><strong>Objective: </strong>The aim of the current study was to further elucidate the effect of SCS on sleep by examining the relationship between pain outcome measures with the insomnia severity index (ISI) and to establish the minimally clinical important difference (MCID), which is defined as the smallest noticeable change that an individual perceives as clinically significant.</p><p><strong>Materials and methods: </strong>We prospectively collected ISI, Epworth sleepiness scale (ESS), Numerical Rating Scale, McGill Pain Questionnaire-Short Form, Oswestry Disability Index, Beck Depression Inventory, and Pain Catastrophizing Scale data both pre- and postoperatively for chronic pain patients who underwent SCS placement and had long-term outcomes. The ISI is a well-studied questionnaire used to assess an individual's level of insomnia.</p><p><strong>Results: </strong>We correlated the ESS and ISI with pain outcome measures in sixty-four patients at a mean follow-up of 9.8 ± 2.9 months. The ISI showed correlations with disability as measured through the Oswestry Disability Index (p = 0.014) and depression as measured through the Beck Depression Inventory (p = 0.024). MCID values for the ISI were calculated using both anchor- and distribution-based methods. The minimal detectable change method resulted in an MCID of 2.4 points, standard error of measurement resulted in an MCID of 2.6 points, and the change difference resulted in an MCID of 2.45. The receiver operating characteristic method yielded an MCID of 0.5-point change with an area under the curve of 0.61.</p><p><strong>Conclusion: </strong>This study successfully established MCID ranges for the ISI outcome measure to help gauge improvement in insomnia after SCS. The ISI has ample evidence of its validity in assessment of insomnia, and MCID values of 2.4-2.6 correlate with improvement in disability and depression in our patients.</p>","PeriodicalId":22078,"journal":{"name":"Stereotactic and Functional Neurosurgery","volume":"101 1","pages":"41-46"},"PeriodicalIF":1.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stereotactic and Functional Neurosurgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000527257","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 1
Abstract
Introduction: As one of the most common medical conditions for which patients seek medical care, chronic pain can be debilitating. The relationship between chronic pain and sleep is thought to be bidirectional, suggesting that treatment of one can be beneficial to the other. There is mounting evidence that spinal cord stimulation (SCS) improves aspects of sleep. How meaningful that is to patients' lives has not been ascertained.
Objective: The aim of the current study was to further elucidate the effect of SCS on sleep by examining the relationship between pain outcome measures with the insomnia severity index (ISI) and to establish the minimally clinical important difference (MCID), which is defined as the smallest noticeable change that an individual perceives as clinically significant.
Materials and methods: We prospectively collected ISI, Epworth sleepiness scale (ESS), Numerical Rating Scale, McGill Pain Questionnaire-Short Form, Oswestry Disability Index, Beck Depression Inventory, and Pain Catastrophizing Scale data both pre- and postoperatively for chronic pain patients who underwent SCS placement and had long-term outcomes. The ISI is a well-studied questionnaire used to assess an individual's level of insomnia.
Results: We correlated the ESS and ISI with pain outcome measures in sixty-four patients at a mean follow-up of 9.8 ± 2.9 months. The ISI showed correlations with disability as measured through the Oswestry Disability Index (p = 0.014) and depression as measured through the Beck Depression Inventory (p = 0.024). MCID values for the ISI were calculated using both anchor- and distribution-based methods. The minimal detectable change method resulted in an MCID of 2.4 points, standard error of measurement resulted in an MCID of 2.6 points, and the change difference resulted in an MCID of 2.45. The receiver operating characteristic method yielded an MCID of 0.5-point change with an area under the curve of 0.61.
Conclusion: This study successfully established MCID ranges for the ISI outcome measure to help gauge improvement in insomnia after SCS. The ISI has ample evidence of its validity in assessment of insomnia, and MCID values of 2.4-2.6 correlate with improvement in disability and depression in our patients.
期刊介绍:
''Stereotactic and Functional Neurosurgery'' provides a single source for the reader to keep abreast of developments in the most rapidly advancing subspecialty within neurosurgery. Technological advances in computer-assisted surgery, robotics, imaging and neurophysiology are being applied to clinical problems with ever-increasing rapidity in stereotaxis more than any other field, providing opportunities for new approaches to surgical and radiotherapeutic management of diseases of the brain, spinal cord, and spine. Issues feature advances in the use of deep-brain stimulation, imaging-guided techniques in stereotactic biopsy and craniotomy, stereotactic radiosurgery, and stereotactically implanted and guided radiotherapeutics and biologicals in the treatment of functional and movement disorders, brain tumors, and other diseases of the brain. Background information from basic science laboratories related to such clinical advances provides the reader with an overall perspective of this field. Proceedings and abstracts from many of the key international meetings furnish an overview of this specialty available nowhere else. ''Stereotactic and Functional Neurosurgery'' meets the information needs of both investigators and clinicians in this rapidly advancing field.