Duarte C Barral, Leopoldo Staiano, Cláudia Guimas Almeida, Dan F Cutler, Emily R Eden, Clare E Futter, Antony Galione, André R A Marques, Diego Luis Medina, Gennaro Napolitano, Carmine Settembre, Otília V Vieira, Johannes M F G Aerts, Peace Atakpa-Adaji, Gemma Bruno, Antonella Capuozzo, Elvira De Leonibus, Chiara Di Malta, Cristina Escrevente, Alessandra Esposito, Paolo Grumati, Michael J Hall, Rita O Teodoro, Susana S Lopes, J Paul Luzio, Jlenia Monfregola, Sandro Montefusco, Frances M Platt, Roman Polishchuck, Maria De Risi, Irene Sambri, Chiara Soldati, Miguel C Seabra
{"title":"Current methods to analyze lysosome morphology, positioning, motility and function.","authors":"Duarte C Barral, Leopoldo Staiano, Cláudia Guimas Almeida, Dan F Cutler, Emily R Eden, Clare E Futter, Antony Galione, André R A Marques, Diego Luis Medina, Gennaro Napolitano, Carmine Settembre, Otília V Vieira, Johannes M F G Aerts, Peace Atakpa-Adaji, Gemma Bruno, Antonella Capuozzo, Elvira De Leonibus, Chiara Di Malta, Cristina Escrevente, Alessandra Esposito, Paolo Grumati, Michael J Hall, Rita O Teodoro, Susana S Lopes, J Paul Luzio, Jlenia Monfregola, Sandro Montefusco, Frances M Platt, Roman Polishchuck, Maria De Risi, Irene Sambri, Chiara Soldati, Miguel C Seabra","doi":"10.1111/tra.12839","DOIUrl":null,"url":null,"abstract":"<p><p>Since the discovery of lysosomes more than 70 years ago, much has been learned about the functions of these organelles. Lysosomes were regarded as exclusively degradative organelles, but more recent research has shown that they play essential roles in several other cellular functions, such as nutrient sensing, intracellular signalling and metabolism. Methodological advances played a key part in generating our current knowledge about the biology of this multifaceted organelle. In this review, we cover current methods used to analyze lysosome morphology, positioning, motility and function. We highlight the principles behind these methods, the methodological strategies and their advantages and limitations. To extract accurate information and avoid misinterpretations, we discuss the best strategies to identify lysosomes and assess their characteristics and functions. With this review, we aim to stimulate an increase in the quantity and quality of research on lysosomes and further ground-breaking discoveries on an organelle that continues to surprise and excite cell biologists.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":"23 5","pages":"238-269"},"PeriodicalIF":3.6000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9323414/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Traffic","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/tra.12839","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/4/24 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Since the discovery of lysosomes more than 70 years ago, much has been learned about the functions of these organelles. Lysosomes were regarded as exclusively degradative organelles, but more recent research has shown that they play essential roles in several other cellular functions, such as nutrient sensing, intracellular signalling and metabolism. Methodological advances played a key part in generating our current knowledge about the biology of this multifaceted organelle. In this review, we cover current methods used to analyze lysosome morphology, positioning, motility and function. We highlight the principles behind these methods, the methodological strategies and their advantages and limitations. To extract accurate information and avoid misinterpretations, we discuss the best strategies to identify lysosomes and assess their characteristics and functions. With this review, we aim to stimulate an increase in the quantity and quality of research on lysosomes and further ground-breaking discoveries on an organelle that continues to surprise and excite cell biologists.
期刊介绍:
Traffic encourages and facilitates the publication of papers in any field relating to intracellular transport in health and disease. Traffic papers span disciplines such as developmental biology, neuroscience, innate and adaptive immunity, epithelial cell biology, intracellular pathogens and host-pathogen interactions, among others using any eukaryotic model system. Areas of particular interest include protein, nucleic acid and lipid traffic, molecular motors, intracellular pathogens, intracellular proteolysis, nuclear import and export, cytokinesis and the cell cycle, the interface between signaling and trafficking or localization, protein translocation, the cell biology of adaptive an innate immunity, organelle biogenesis, metabolism, cell polarity and organization, and organelle movement.
All aspects of the structural, molecular biology, biochemistry, genetics, morphology, intracellular signaling and relationship to hereditary or infectious diseases will be covered. Manuscripts must provide a clear conceptual or mechanistic advance. The editors will reject papers that require major changes, including addition of significant experimental data or other significant revision.
Traffic will consider manuscripts of any length, but encourages authors to limit their papers to 16 typeset pages or less.