Alireza Sadeghi Alavijeh , Sandeep Bhattacharya , Owen Thomas , Carmen Chuy , Erik Kjeang
{"title":"A rapid mechanical durability test for reinforced fuel cell membranes","authors":"Alireza Sadeghi Alavijeh , Sandeep Bhattacharya , Owen Thomas , Carmen Chuy , Erik Kjeang","doi":"10.1016/j.powera.2020.100010","DOIUrl":null,"url":null,"abstract":"<div><p>An in situ accelerated mechanical stress test (ΔP-AMST) that applies relative humidity (RH) cycling combined with a pressure differential (ΔP) at a high temperature is proposed to accelerate mechanical degradation in all types of reinforced membranes used in fuel cells and obtain mechanical failure in a relatively short time. For validation, ePTFE reinforced membranes are mechanically degraded by RH cycling accelerated by means of a ΔP applied from cathode to anode using a custom designed polycarbonate spacer. Reinforced membrane failure detected by ΔP loss is reached within ∼10 to 10,000 RH cycles using this method, depending on the level of applied ΔP. The ΔP-AMST protocol is hence demonstrated as a fast, economical in situ alternative compared to existing methods for evaluating the mechanical fatigue durability of advanced fuel cell membranes.</p></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.powera.2020.100010","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266624852030010X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 3
Abstract
An in situ accelerated mechanical stress test (ΔP-AMST) that applies relative humidity (RH) cycling combined with a pressure differential (ΔP) at a high temperature is proposed to accelerate mechanical degradation in all types of reinforced membranes used in fuel cells and obtain mechanical failure in a relatively short time. For validation, ePTFE reinforced membranes are mechanically degraded by RH cycling accelerated by means of a ΔP applied from cathode to anode using a custom designed polycarbonate spacer. Reinforced membrane failure detected by ΔP loss is reached within ∼10 to 10,000 RH cycles using this method, depending on the level of applied ΔP. The ΔP-AMST protocol is hence demonstrated as a fast, economical in situ alternative compared to existing methods for evaluating the mechanical fatigue durability of advanced fuel cell membranes.