A rapid mechanical durability test for reinforced fuel cell membranes

IF 5.4 Q2 CHEMISTRY, PHYSICAL Journal of Power Sources Advances Pub Date : 2020-04-01 DOI:10.1016/j.powera.2020.100010
Alireza Sadeghi Alavijeh , Sandeep Bhattacharya , Owen Thomas , Carmen Chuy , Erik Kjeang
{"title":"A rapid mechanical durability test for reinforced fuel cell membranes","authors":"Alireza Sadeghi Alavijeh ,&nbsp;Sandeep Bhattacharya ,&nbsp;Owen Thomas ,&nbsp;Carmen Chuy ,&nbsp;Erik Kjeang","doi":"10.1016/j.powera.2020.100010","DOIUrl":null,"url":null,"abstract":"<div><p>An in situ accelerated mechanical stress test (ΔP-AMST) that applies relative humidity (RH) cycling combined with a pressure differential (ΔP) at a high temperature is proposed to accelerate mechanical degradation in all types of reinforced membranes used in fuel cells and obtain mechanical failure in a relatively short time. For validation, ePTFE reinforced membranes are mechanically degraded by RH cycling accelerated by means of a ΔP applied from cathode to anode using a custom designed polycarbonate spacer. Reinforced membrane failure detected by ΔP loss is reached within ∼10 to 10,000 RH cycles using this method, depending on the level of applied ΔP. The ΔP-AMST protocol is hence demonstrated as a fast, economical in situ alternative compared to existing methods for evaluating the mechanical fatigue durability of advanced fuel cell membranes.</p></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"2 ","pages":"Article 100010"},"PeriodicalIF":5.4000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.powera.2020.100010","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266624852030010X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 3

Abstract

An in situ accelerated mechanical stress test (ΔP-AMST) that applies relative humidity (RH) cycling combined with a pressure differential (ΔP) at a high temperature is proposed to accelerate mechanical degradation in all types of reinforced membranes used in fuel cells and obtain mechanical failure in a relatively short time. For validation, ePTFE reinforced membranes are mechanically degraded by RH cycling accelerated by means of a ΔP applied from cathode to anode using a custom designed polycarbonate spacer. Reinforced membrane failure detected by ΔP loss is reached within ∼10 to 10,000 RH cycles using this method, depending on the level of applied ΔP. The ΔP-AMST protocol is hence demonstrated as a fast, economical in situ alternative compared to existing methods for evaluating the mechanical fatigue durability of advanced fuel cell membranes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
增强燃料电池膜的快速机械耐久性试验
提出了一种在高温下应用相对湿度(RH)循环结合压差(ΔP)的原位加速机械应力测试(ΔP-AMST),以加速燃料电池中使用的所有类型的增强膜的机械降解,并在相对较短的时间内获得机械失效。为了验证,ePTFE增强膜通过使用定制设计的聚碳酸酯间隔剂从阴极到阳极施加ΔP,通过RH循环加速机械降解。通过ΔP损耗检测到的增强膜失效在使用该方法的~ 10至10,000 RH循环内达到,具体取决于施加的水平ΔP。因此,与现有的评估先进燃料电池膜机械疲劳耐久性的方法相比,ΔP-AMST方案被证明是一种快速、经济的原位替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
18
审稿时长
64 days
期刊最新文献
Formulating PEO-polycarbonate blends as solid polymer electrolytes by solvent-free extrusion Enhancing performance and sustainability of lithium manganese oxide cathodes with a poly(ionic liquid) binder and ionic liquid electrolyte Enhancing the stability of sodium-ion capacitors by introducing glyoxylic-acetal based electrolyte The implementation of a voltage-based tunneling mechanism in aging models for lithium-ion batteries Electronic structure evolution upon lithiation: A Li K-edge study of silicon oxide anode through X-ray Raman spectroscopy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1