Computational prediction of frequent hitters in target-based and cell-based assays

Conrad Stork , Neann Mathai , Johannes Kirchmair
{"title":"Computational prediction of frequent hitters in target-based and cell-based assays","authors":"Conrad Stork ,&nbsp;Neann Mathai ,&nbsp;Johannes Kirchmair","doi":"10.1016/j.ailsci.2021.100007","DOIUrl":null,"url":null,"abstract":"<div><p>Compounds interfering with high-throughput screening (HTS) assay technologies (also known as “badly behaving compounds”, “bad actors”, “nuisance compounds” or “PAINS”) pose a major challenge to early-stage drug discovery. Many of these problematic compounds are “frequent hitters”, and we have recently published a set of machine learning models (“Hit Dexter 2.0”) for flagging such compounds.</p><p>Here we present a new generation of machine learning models which are derived from a large, manually curated and annotated data set. For the first time, these models cover, in addition to target-based assays, also cell-based assays. Our experiments show that cell-based assays behave indeed differently from target-based assays, with respect to hit rates and frequent hitters, and that dedicated models are required to produce meaningful predictions. In addition to these extensions and refinements, we explored a variety of additional setups for modeling, including the combination of four machine learning classifiers (i.e. k-nearest neighbors (KNN), extra trees, random forest and multilayer perceptron) with four sets of descriptors (Morgan2 fingerprints, Morgan3 fingerprints, MACCS keys and 2D physicochemical property descriptors).</p><p>Testing on holdout data as well as data sets of “dark chemical matter” (i.e. compounds that have been extensively tested in biological assays but have never shown activity) and known bad actors show that the multilayer perceptron classifiers in combination with Morgan2 fingerprints outperform other setups in most cases. The best multilayer perceptron classifiers obtained Matthews correlation coefficients of up to 0.648 on holdout data. These models are available via a free web service.</p></div>","PeriodicalId":72304,"journal":{"name":"Artificial intelligence in the life sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ailsci.2021.100007","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence in the life sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667318521000076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Compounds interfering with high-throughput screening (HTS) assay technologies (also known as “badly behaving compounds”, “bad actors”, “nuisance compounds” or “PAINS”) pose a major challenge to early-stage drug discovery. Many of these problematic compounds are “frequent hitters”, and we have recently published a set of machine learning models (“Hit Dexter 2.0”) for flagging such compounds.

Here we present a new generation of machine learning models which are derived from a large, manually curated and annotated data set. For the first time, these models cover, in addition to target-based assays, also cell-based assays. Our experiments show that cell-based assays behave indeed differently from target-based assays, with respect to hit rates and frequent hitters, and that dedicated models are required to produce meaningful predictions. In addition to these extensions and refinements, we explored a variety of additional setups for modeling, including the combination of four machine learning classifiers (i.e. k-nearest neighbors (KNN), extra trees, random forest and multilayer perceptron) with four sets of descriptors (Morgan2 fingerprints, Morgan3 fingerprints, MACCS keys and 2D physicochemical property descriptors).

Testing on holdout data as well as data sets of “dark chemical matter” (i.e. compounds that have been extensively tested in biological assays but have never shown activity) and known bad actors show that the multilayer perceptron classifiers in combination with Morgan2 fingerprints outperform other setups in most cases. The best multilayer perceptron classifiers obtained Matthews correlation coefficients of up to 0.648 on holdout data. These models are available via a free web service.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于靶标和基于细胞的检测中频繁撞击的计算预测
干扰高通量筛选(HTS)测定技术的化合物(也称为“不良行为化合物”、“不良行为者”、“滋扰化合物”或“PAINS”)对早期药物发现构成了重大挑战。这些有问题的化合物中有许多是“频繁攻击者”,我们最近发布了一组机器学习模型(“Hit Dexter 2.0”)来标记这些化合物。在这里,我们提出了新一代的机器学习模型,这些模型来自于一个大型的、人工整理和注释的数据集。这是第一次,这些模型覆盖,除了基于目标的分析,也基于细胞的分析。我们的实验表明,基于细胞的分析在命中率和频繁击中方面确实与基于目标的分析不同,并且需要专门的模型来产生有意义的预测。除了这些扩展和改进之外,我们还探索了各种额外的建模设置,包括四种机器学习分类器(即k近邻(KNN),额外树,随机森林和多层感知器)与四组描述符(Morgan2指纹,Morgan3指纹,MACCS密钥和2D物理化学性质描述符)的组合。对保留数据以及“暗化学物质”(即在生物分析中经过广泛测试但从未显示出活性的化合物)和已知不良分子的数据集进行的测试表明,多层感知器分类器与Morgan2指纹相结合在大多数情况下优于其他设置。最好的多层感知器分类器在holdout数据上获得的马修斯相关系数高达0.648。这些模型可以通过一个免费的网络服务获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Artificial intelligence in the life sciences
Artificial intelligence in the life sciences Pharmacology, Biochemistry, Genetics and Molecular Biology (General), Computer Science Applications, Health Informatics, Drug Discovery, Veterinary Science and Veterinary Medicine (General)
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
15 days
期刊最新文献
Modeling PROTAC degradation activity with machine learning Machine learning proteochemometric models for Cereblon glue activity predictions Editorial Board Statistical approaches enabling technology-specific assay interference prediction from large screening data sets Federated learning for predicting compound mechanism of action based on image-data from cell painting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1