LIDEB's Useful Decoys (LUDe): A freely available decoy-generation tool. Benchmarking and scope

Lucas N. Alberca , Denis N. Prada Gori , Maximiliano J. Fallico , Alexandre V. Fassio , Alan Talevi , Carolina L. Bellera
{"title":"LIDEB's Useful Decoys (LUDe): A freely available decoy-generation tool. Benchmarking and scope","authors":"Lucas N. Alberca ,&nbsp;Denis N. Prada Gori ,&nbsp;Maximiliano J. Fallico ,&nbsp;Alexandre V. Fassio ,&nbsp;Alan Talevi ,&nbsp;Carolina L. Bellera","doi":"10.1016/j.ailsci.2025.100129","DOIUrl":null,"url":null,"abstract":"<div><div>In the field of chemoinformatics, and in particular, when developing models to be applied in virtual screening campaigns, it is essential to run retrospective virtual screening experiments that evaluate the performance of such models in a scenario similar to the real one. That is, the ability to recover a small number of active compounds dispersed among a much larger number of compounds without the desired activity. However, such a retrospective experiment is often limited by the relative scarcity of known inactive compounds against the pharmacological target of interest. In these cases, automatic decoy (putative inactive compound) generation tools are often of great importance. Their basic goal is to generate decoys that are similar enough to the known active compounds to challenge the models, but different enough so that the probability that the decoys modulate the molecular target of interest is small.</div><div>In this article, we report the latest version of our open-source decoy generation tool LUDe, inspired by the well-known DUD-E but designed to reduce the probability of generating decoys topologically similar to known active compounds. We have carried out a benchmarking exercise against DUD-E through 102 pharmacological targets, using the DOE score and the Doppelganger score as comparison criteria. LUDe decoys obtained better DOE scores across most of the targets, indicating a lower risk of artificial enrichment. The mean Doppelganger score, in contrast, was similar for LUDe and DUD-E decoys, exhibiting a slight improvement for LUDe decoys for most of the targets. Simulation experiments were performed to verify whether the generated decoys are unsuitable to validate ligand-based models. Our results suggest that LUDe decoys are apt to be used to validate and compare machine learning ligand-based screening approaches. Importantly, LUDe may be used locally, independently from external server availability, and is thus suitable to obtain decoys from large datasets. It is available as a Web App (at <span><span>https://lideb.biol.unlp.edu.ar/?page_id=1076</span><svg><path></path></svg></span>) and as Python code at (<span><span>https://github.com/LIDeB/LUDe.v1.0</span><svg><path></path></svg></span>)</div></div>","PeriodicalId":72304,"journal":{"name":"Artificial intelligence in the life sciences","volume":"7 ","pages":"Article 100129"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence in the life sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667318525000054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the field of chemoinformatics, and in particular, when developing models to be applied in virtual screening campaigns, it is essential to run retrospective virtual screening experiments that evaluate the performance of such models in a scenario similar to the real one. That is, the ability to recover a small number of active compounds dispersed among a much larger number of compounds without the desired activity. However, such a retrospective experiment is often limited by the relative scarcity of known inactive compounds against the pharmacological target of interest. In these cases, automatic decoy (putative inactive compound) generation tools are often of great importance. Their basic goal is to generate decoys that are similar enough to the known active compounds to challenge the models, but different enough so that the probability that the decoys modulate the molecular target of interest is small.
In this article, we report the latest version of our open-source decoy generation tool LUDe, inspired by the well-known DUD-E but designed to reduce the probability of generating decoys topologically similar to known active compounds. We have carried out a benchmarking exercise against DUD-E through 102 pharmacological targets, using the DOE score and the Doppelganger score as comparison criteria. LUDe decoys obtained better DOE scores across most of the targets, indicating a lower risk of artificial enrichment. The mean Doppelganger score, in contrast, was similar for LUDe and DUD-E decoys, exhibiting a slight improvement for LUDe decoys for most of the targets. Simulation experiments were performed to verify whether the generated decoys are unsuitable to validate ligand-based models. Our results suggest that LUDe decoys are apt to be used to validate and compare machine learning ligand-based screening approaches. Importantly, LUDe may be used locally, independently from external server availability, and is thus suitable to obtain decoys from large datasets. It is available as a Web App (at https://lideb.biol.unlp.edu.ar/?page_id=1076) and as Python code at (https://github.com/LIDeB/LUDe.v1.0)
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Artificial intelligence in the life sciences
Artificial intelligence in the life sciences Pharmacology, Biochemistry, Genetics and Molecular Biology (General), Computer Science Applications, Health Informatics, Drug Discovery, Veterinary Science and Veterinary Medicine (General)
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
15 days
期刊最新文献
Multi-objective synthesis planning by means of Monte Carlo Tree search Enhancing uncertainty quantification in drug discovery with censored regression labels Conformal prediction-based machine learning in Cheminformatics: Current applications and new challenges LIDEB's Useful Decoys (LUDe): A freely available decoy-generation tool. Benchmarking and scope “Foundation models for research: A matter of trust?”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1