Enhancing uncertainty quantification in drug discovery with censored regression labels

Emma Svensson , Hannah Rosa Friesacher , Susanne Winiwarter , Lewis Mervin , Adam Arany , Ola Engkvist
{"title":"Enhancing uncertainty quantification in drug discovery with censored regression labels","authors":"Emma Svensson ,&nbsp;Hannah Rosa Friesacher ,&nbsp;Susanne Winiwarter ,&nbsp;Lewis Mervin ,&nbsp;Adam Arany ,&nbsp;Ola Engkvist","doi":"10.1016/j.ailsci.2025.100128","DOIUrl":null,"url":null,"abstract":"<div><div>In the early stages of drug discovery, decisions regarding which experiments to pursue can be influenced by computational models for quantitative structure–activity relationships (QSAR). These decisions are critical due to the time-consuming and expensive nature of the experiments. Therefore, it is becoming essential to accurately quantify the uncertainty in machine learning predictions, such that resources can be used optimally and trust in the models improves. While computational methods for QSAR modeling often suffer from limited data and sparse experimental observations, additional information can exist in the form of censored labels that provide thresholds rather than precise values of observations. However, the standard approaches that quantify uncertainty in machine learning cannot fully utilize censored labels. In this work, we adapt ensemble-based, Bayesian, and Gaussian models with tools to learn from censored labels by using the Tobit model from survival analysis. Our results demonstrate that despite the partial information available in censored labels, they are essential to reliably estimate uncertainties in real pharmaceutical settings where approximately one-third or more of experimental labels are censored.</div></div>","PeriodicalId":72304,"journal":{"name":"Artificial intelligence in the life sciences","volume":"7 ","pages":"Article 100128"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence in the life sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667318525000042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the early stages of drug discovery, decisions regarding which experiments to pursue can be influenced by computational models for quantitative structure–activity relationships (QSAR). These decisions are critical due to the time-consuming and expensive nature of the experiments. Therefore, it is becoming essential to accurately quantify the uncertainty in machine learning predictions, such that resources can be used optimally and trust in the models improves. While computational methods for QSAR modeling often suffer from limited data and sparse experimental observations, additional information can exist in the form of censored labels that provide thresholds rather than precise values of observations. However, the standard approaches that quantify uncertainty in machine learning cannot fully utilize censored labels. In this work, we adapt ensemble-based, Bayesian, and Gaussian models with tools to learn from censored labels by using the Tobit model from survival analysis. Our results demonstrate that despite the partial information available in censored labels, they are essential to reliably estimate uncertainties in real pharmaceutical settings where approximately one-third or more of experimental labels are censored.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Artificial intelligence in the life sciences
Artificial intelligence in the life sciences Pharmacology, Biochemistry, Genetics and Molecular Biology (General), Computer Science Applications, Health Informatics, Drug Discovery, Veterinary Science and Veterinary Medicine (General)
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
15 days
期刊最新文献
Multi-objective synthesis planning by means of Monte Carlo Tree search Enhancing uncertainty quantification in drug discovery with censored regression labels Conformal prediction-based machine learning in Cheminformatics: Current applications and new challenges LIDEB's Useful Decoys (LUDe): A freely available decoy-generation tool. Benchmarking and scope “Foundation models for research: A matter of trust?”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1