Lightweight Machine Learning for Seizure Detection on Wearable Devices

Baichuan Huang, A. Abtahi, A. Aminifar
{"title":"Lightweight Machine Learning for Seizure Detection on Wearable Devices","authors":"Baichuan Huang, A. Abtahi, A. Aminifar","doi":"10.1109/ICASSP49357.2023.10096280","DOIUrl":null,"url":null,"abstract":"For patients with epilepsy, automatic epilepsy monitoring, i.e., the process of direct observation of the patient’s health status in real time, is crucial. Wearable systems provide the possibility of real-time epilepsy monitoring and alerting caregivers upon the occurrence of a seizure. In the context of the ICASSP 2023 Seizure Detection Challenge, we propose a lightweight machine-learning framework for real-time epilepsy monitoring on wearable devices. We evaluate our proposed framework on the SeizeIT2 dataset from the wearable SensorDot (SD) of Byteflies. The experimental results show that our proposed framework achieves a sensitivity of 73.6% and a specificity of 96.7% in seizure detection.","PeriodicalId":113072,"journal":{"name":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"11 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP49357.2023.10096280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

For patients with epilepsy, automatic epilepsy monitoring, i.e., the process of direct observation of the patient’s health status in real time, is crucial. Wearable systems provide the possibility of real-time epilepsy monitoring and alerting caregivers upon the occurrence of a seizure. In the context of the ICASSP 2023 Seizure Detection Challenge, we propose a lightweight machine-learning framework for real-time epilepsy monitoring on wearable devices. We evaluate our proposed framework on the SeizeIT2 dataset from the wearable SensorDot (SD) of Byteflies. The experimental results show that our proposed framework achieves a sensitivity of 73.6% and a specificity of 96.7% in seizure detection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于可穿戴设备癫痫检测的轻量级机器学习
对于癫痫患者来说,癫痫自动监测,即实时直接观察患者健康状态的过程至关重要。可穿戴系统提供了实时癫痫监测的可能性,并在癫痫发作时提醒护理人员。在ICASSP 2023癫痫检测挑战赛的背景下,我们提出了一个轻量级的机器学习框架,用于可穿戴设备上的实时癫痫监测。我们在字节蝇的可穿戴传感器dot (SD)的SeizeIT2数据集上评估了我们提出的框架。实验结果表明,本文提出的框架检测癫痫发作的灵敏度为73.6%,特异性为96.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Lightweight Machine Learning for Seizure Detection on Wearable Devices MSN-net: Multi-Scale Normality Network for Video Anomaly Detection ITER-SIS: Robust Unlimited Sampling Via Iterative Signal Sieving Streaming Multi-Channel Speech Separation with Online Time-Domain Generalized Wiener Filter MMATR: A Lightweight Approach for Multimodal Sentiment Analysis Based on Tensor Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1