Streaming Multi-Channel Speech Separation with Online Time-Domain Generalized Wiener Filter

Yi Luo
{"title":"Streaming Multi-Channel Speech Separation with Online Time-Domain Generalized Wiener Filter","authors":"Yi Luo","doi":"10.1109/ICASSP49357.2023.10095207","DOIUrl":null,"url":null,"abstract":"Most existing streaming neural-network-based multi-channel speech separation systems consist of a causal network architecture and an online spatial information extraction module. The spatial information extraction module can either be a feature calculation module that generates cross-channel features or an online beamforming module that explicitly performs frame- or chunk-level spatial filtering. While such online beamforming modules were mainly proposed in the frequency domain, recent literature have investigated the potential of learnable time-domain methods which can be jointly optimized with the entire model with a single training objective. Among those methods, the time-domain generalized Wiener filter (TD-GWF) has shown performance gain compared to conventional frequency-domain beamformers in the sequential beamforming pipeline. In this paper, we modify the offline TD-GWF to an online counterpart via a Sherman-Morrison formula-based approximation and introduce how we simplify and stabilize the training phase. Experiment results on applying various offline and online spatial filtering modules in the sequential beamforming pipeline show that the online TD-GWF can obtain better performance than an offline frequency-domain multi-channel Wiener filter (FD-MCWF) in the noisy multi-channel reverberant speech separation task.","PeriodicalId":113072,"journal":{"name":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"53 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP49357.2023.10095207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Most existing streaming neural-network-based multi-channel speech separation systems consist of a causal network architecture and an online spatial information extraction module. The spatial information extraction module can either be a feature calculation module that generates cross-channel features or an online beamforming module that explicitly performs frame- or chunk-level spatial filtering. While such online beamforming modules were mainly proposed in the frequency domain, recent literature have investigated the potential of learnable time-domain methods which can be jointly optimized with the entire model with a single training objective. Among those methods, the time-domain generalized Wiener filter (TD-GWF) has shown performance gain compared to conventional frequency-domain beamformers in the sequential beamforming pipeline. In this paper, we modify the offline TD-GWF to an online counterpart via a Sherman-Morrison formula-based approximation and introduce how we simplify and stabilize the training phase. Experiment results on applying various offline and online spatial filtering modules in the sequential beamforming pipeline show that the online TD-GWF can obtain better performance than an offline frequency-domain multi-channel Wiener filter (FD-MCWF) in the noisy multi-channel reverberant speech separation task.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于在线时域广义维纳滤波器的流多通道语音分离
现有的基于流神经网络的多通道语音分离系统大多由因果网络架构和在线空间信息提取模块组成。所述空间信息提取模块可以是生成跨信道特征的特征计算模块,也可以是显式执行帧级或块级空间滤波的在线波束形成模块。虽然这种在线波束形成模块主要是在频域提出的,但最近的文献已经研究了可学习的时域方法的潜力,该方法可以在单个训练目标下与整个模型共同优化。在这些方法中,时域广义维纳滤波器(TD-GWF)在序列波束形成管道中比传统的频域波束形成器表现出了性能的提高。在本文中,我们通过基于Sherman-Morrison公式的近似将离线TD-GWF修改为在线对应的TD-GWF,并介绍了我们如何简化和稳定训练阶段。在顺序波束形成管道中应用各种离线和在线空间滤波模块的实验结果表明,在线TD-GWF在噪声多通道混响语音分离任务中比离线频域多通道维纳滤波器(FD-MCWF)获得了更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Lightweight Machine Learning for Seizure Detection on Wearable Devices MSN-net: Multi-Scale Normality Network for Video Anomaly Detection ITER-SIS: Robust Unlimited Sampling Via Iterative Signal Sieving Streaming Multi-Channel Speech Separation with Online Time-Domain Generalized Wiener Filter MMATR: A Lightweight Approach for Multimodal Sentiment Analysis Based on Tensor Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1