Drug Review-based Diabetes Prediction by Using Naïve Bayes Method

Aisah Mujahidah Rasunah, E. B. Setiawan, I. Kurniawan
{"title":"Drug Review-based Diabetes Prediction by Using Naïve Bayes Method","authors":"Aisah Mujahidah Rasunah, E. B. Setiawan, I. Kurniawan","doi":"10.1109/ICADEIS52521.2021.9701942","DOIUrl":null,"url":null,"abstract":"Diabetes is a metabolic disease characterized by hyperglycemia caused by defects in insulin secretion, insulin action, or both. Several studies show that late and inappropriate treatment in diabetes mellitus will cause uncontrolled blood glucose in the long term. This condition causes severe changes in heart, brain blood vessels and leg blood vessels, nerves, kidneys, and eyes. Hence, the ability to recognize the existence of diabetes is necessary to prevent the worse condition. This study utilizes the Naive Bayes method to predict diabetes based on drug reviews. The N-Gram and TF-IDF (Term Frequency– Inverse Document Frequency) methods are used for feature extraction. We found that the utilization of the uni-bigram+trigram feature produces the best result with the values of accuracy and F1-score are 0.928 and 0.932, respectively.","PeriodicalId":422702,"journal":{"name":"2021 International Conference Advancement in Data Science, E-learning and Information Systems (ICADEIS)","volume":"17 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference Advancement in Data Science, E-learning and Information Systems (ICADEIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICADEIS52521.2021.9701942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Diabetes is a metabolic disease characterized by hyperglycemia caused by defects in insulin secretion, insulin action, or both. Several studies show that late and inappropriate treatment in diabetes mellitus will cause uncontrolled blood glucose in the long term. This condition causes severe changes in heart, brain blood vessels and leg blood vessels, nerves, kidneys, and eyes. Hence, the ability to recognize the existence of diabetes is necessary to prevent the worse condition. This study utilizes the Naive Bayes method to predict diabetes based on drug reviews. The N-Gram and TF-IDF (Term Frequency– Inverse Document Frequency) methods are used for feature extraction. We found that the utilization of the uni-bigram+trigram feature produces the best result with the values of accuracy and F1-score are 0.928 and 0.932, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于药物评论的Naïve贝叶斯方法预测糖尿病
糖尿病是一种以高血糖为特征的代谢性疾病,其原因是胰岛素分泌、胰岛素作用或两者都有缺陷。多项研究表明,糖尿病的治疗晚,治疗不当,将导致长期血糖失控。这种情况会导致心脏、脑血管、腿部血管、神经、肾脏和眼睛的严重变化。因此,认识到糖尿病的存在是必要的,以防止病情恶化。本研究利用朴素贝叶斯方法在药物评价的基础上预测糖尿病。使用N-Gram和TF-IDF (Term Frequency - Inverse Document Frequency)方法进行特征提取。我们发现利用单双字母+三字母特征的效果最好,准确率和F1-score分别为0.928和0.932。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Drug Review-based Diabetes Prediction by Using Naïve Bayes Method Scrum Best Practices Recommendation: a Media and Community Startup Case Study Sniffing Prevention in LoRa Network Using Combination of Advanced Encryption Standard (AES) and Message Authentication Code (MAC) Challenges in the implementation of E-Learning in Afghanistan Higher Education Implementation of the Spiral Optimization Algorithm in the Support Vector Machine (SVM) Classification Method (Case Study: Diabetes Prediction)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1