Implementation of the Spiral Optimization Algorithm in the Support Vector Machine (SVM) Classification Method (Case Study: Diabetes Prediction)

Made Adi Widyananda, Irma Palupi
{"title":"Implementation of the Spiral Optimization Algorithm in the Support Vector Machine (SVM) Classification Method (Case Study: Diabetes Prediction)","authors":"Made Adi Widyananda, Irma Palupi","doi":"10.1109/ICADEIS52521.2021.9701953","DOIUrl":null,"url":null,"abstract":"Classification is a data mining method that is formulated to estimate group membership for data samples, this process is used to analyze the connections between data in a large data set. One of the classification methods that are often used is Support Vector Machine (SVM), in the SVM method there is a kernel function that helps in solving classification problems that cannot be separated linearly, one of which is the Radial Basis Function (RBF) Kernel. In using the SVM method with the RBF kernel function, Gamma and C parameters can affect the shape of the hyperplane in producing a good classification model, so that optimal Gamma and C parameter values are needed to produce a good classification. This study using the Spiral optimization Algorithm in optimizing Gamma and C parameters, by conducting several experimental stages in determining the best parameters of the Spiral optimization Algorithm to determine the Gamma and C parameters, SVM classification method with RBF kernel function can produce the highest accuracy is 86.15% with an average accuracy is 80.12% based on Pima Indians Diabetes dataset.","PeriodicalId":422702,"journal":{"name":"2021 International Conference Advancement in Data Science, E-learning and Information Systems (ICADEIS)","volume":"596 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference Advancement in Data Science, E-learning and Information Systems (ICADEIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICADEIS52521.2021.9701953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Classification is a data mining method that is formulated to estimate group membership for data samples, this process is used to analyze the connections between data in a large data set. One of the classification methods that are often used is Support Vector Machine (SVM), in the SVM method there is a kernel function that helps in solving classification problems that cannot be separated linearly, one of which is the Radial Basis Function (RBF) Kernel. In using the SVM method with the RBF kernel function, Gamma and C parameters can affect the shape of the hyperplane in producing a good classification model, so that optimal Gamma and C parameter values are needed to produce a good classification. This study using the Spiral optimization Algorithm in optimizing Gamma and C parameters, by conducting several experimental stages in determining the best parameters of the Spiral optimization Algorithm to determine the Gamma and C parameters, SVM classification method with RBF kernel function can produce the highest accuracy is 86.15% with an average accuracy is 80.12% based on Pima Indians Diabetes dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
螺旋优化算法在支持向量机(SVM)分类方法中的实现(以糖尿病预测为例)
分类是为了估计数据样本的群体隶属性而制定的一种数据挖掘方法,该过程用于分析大数据集中数据之间的联系。常用的分类方法之一是支持向量机(Support Vector Machine, SVM),在SVM方法中有一个有助于解决不能线性分离的分类问题的核函数,其中之一就是径向基函数(Radial Basis function, RBF)核函数。在使用RBF核函数支持向量机方法时,Gamma和C参数会影响超平面的形状以产生好的分类模型,因此需要最优的Gamma和C参数值才能产生好的分类模型。本研究采用螺旋优化算法对Gamma和C参数进行优化,通过几个阶段的实验确定螺旋优化算法确定Gamma和C参数的最佳参数,基于RBF核函数的SVM分类方法在皮马印第安人糖尿病数据集上的准确率最高为86.15%,平均准确率为80.12%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Drug Review-based Diabetes Prediction by Using Naïve Bayes Method Scrum Best Practices Recommendation: a Media and Community Startup Case Study Sniffing Prevention in LoRa Network Using Combination of Advanced Encryption Standard (AES) and Message Authentication Code (MAC) Challenges in the implementation of E-Learning in Afghanistan Higher Education Implementation of the Spiral Optimization Algorithm in the Support Vector Machine (SVM) Classification Method (Case Study: Diabetes Prediction)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1