On the Performance of Matching MMPP to SRD and LRD Traffic Using Algorithm LAMBDA

A. Shirazinia, S. M. Safavi, E.N. Shariati
{"title":"On the Performance of Matching MMPP to SRD and LRD Traffic Using Algorithm LAMBDA","authors":"A. Shirazinia, S. M. Safavi, E.N. Shariati","doi":"10.1109/ICTTA.2008.4530205","DOIUrl":null,"url":null,"abstract":"Markov-modulated Poisson process (MMPP) is one of the popular non-self-similar schemes for modeling network traffic. They are used for modeling both short-range dependent (SRD) and long-range dependent (LRD) traffic. The paper verifies Algorithm LAMBDA for fitting MMPP to synthetic traffic and evaluates the accuracy of the fitted MMPP model. We provide evidence that, for self-similar traffic, the performance highly depends on Hurst parameter. In some cases, the algorithm exhibits some inaccuracy in mean queuing delays. We try to modify it by a simple change in order to make the algorithm adaptive, and consequently, make the results more realistic.","PeriodicalId":330215,"journal":{"name":"2008 3rd International Conference on Information and Communication Technologies: From Theory to Applications","volume":"8 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 3rd International Conference on Information and Communication Technologies: From Theory to Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTTA.2008.4530205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Markov-modulated Poisson process (MMPP) is one of the popular non-self-similar schemes for modeling network traffic. They are used for modeling both short-range dependent (SRD) and long-range dependent (LRD) traffic. The paper verifies Algorithm LAMBDA for fitting MMPP to synthetic traffic and evaluates the accuracy of the fitted MMPP model. We provide evidence that, for self-similar traffic, the performance highly depends on Hurst parameter. In some cases, the algorithm exhibits some inaccuracy in mean queuing delays. We try to modify it by a simple change in order to make the algorithm adaptive, and consequently, make the results more realistic.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于LAMBDA算法的MMPP与SRD和LRD流量匹配性能研究
马尔可夫调制泊松过程(MMPP)是一种常用的非自相似网络流量建模方法。它们用于对短程依赖(SRD)和远程依赖(LRD)流量进行建模。本文验证了LAMBDA算法对综合交通的MMPP拟合,并对拟合的MMPP模型的精度进行了评价。我们提供的证据表明,对于自相似流量,性能高度依赖于赫斯特参数。在某些情况下,该算法在平均排队延迟上表现出一定的不准确性。我们试图通过一个简单的改变来修改它,以使算法自适应,从而使结果更真实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Weight based DSR for Mobile Ad Hoc Networks Remote Control and Overall Administration of Computer Networks, Using Short Message Service On the Performance of Matching MMPP to SRD and LRD Traffic Using Algorithm LAMBDA Large Scale Data Management in Grid Systems: a Survey Scheduling Multiple Concurrent Projects Using Shared Resources with Allocation Costs and Technical Constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1