{"title":"Nonlinear system identification using diagonal recurrent neural networks","authors":"C. Ku, K.Y. Lee","doi":"10.1109/IJCNN.1992.227048","DOIUrl":null,"url":null,"abstract":"The recurrent neural network is proposed for system identification of nonlinear dynamic systems. When the system identification is coupled with control problems, the real-time feature is very important, and a neuro-identifier must be designed so that it will converge and the training time will not be too long. The neural network should also be simple and implemented easily. A novel neuro-identifier, the diagonal recurrent neural network (DRNN), that fulfils these requirements is proposed. A generalized algorithm, dynamic backpropagation, is developed to train the DRNN. The DRNN was used to identify nonlinear systems, and simulation showed promising results.<<ETX>>","PeriodicalId":286849,"journal":{"name":"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks","volume":"81 13","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1992.227048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
The recurrent neural network is proposed for system identification of nonlinear dynamic systems. When the system identification is coupled with control problems, the real-time feature is very important, and a neuro-identifier must be designed so that it will converge and the training time will not be too long. The neural network should also be simple and implemented easily. A novel neuro-identifier, the diagonal recurrent neural network (DRNN), that fulfils these requirements is proposed. A generalized algorithm, dynamic backpropagation, is developed to train the DRNN. The DRNN was used to identify nonlinear systems, and simulation showed promising results.<>