Why error measures are sub-optimal for training neural network pattern classifiers

J. Hampshire, B. V. Vijaya Kumar
{"title":"Why error measures are sub-optimal for training neural network pattern classifiers","authors":"J. Hampshire, B. V. Vijaya Kumar","doi":"10.1109/IJCNN.1992.227338","DOIUrl":null,"url":null,"abstract":"Pattern classifiers that are trained in a supervised fashion are typically trained with an error measure objective function such as mean-squared error (MSE) or cross-entropy (CE). These classifiers can in theory yield Bayesian discrimination, but in practice they often fail to do so. The authors explain why this happens and identify a number of characteristics that the optimal objective function for training classifiers must have. They show that classification figures of merit (CFM/sub mono/) possess these optimal characteristics, whereas error measures such as MSE and CE do not. The arguments are illustrated with a simple example in which a CFM/sub mono/-trained low-order polynomial neural network approximates Bayesian discrimination on a random scalar with the fewest number of training samples and the minimum functional complexity necessary for the task. A comparable MSE-trained net yields significantly worse discrimination on the same task.<<ETX>>","PeriodicalId":286849,"journal":{"name":"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks","volume":"2014 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1992.227338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Pattern classifiers that are trained in a supervised fashion are typically trained with an error measure objective function such as mean-squared error (MSE) or cross-entropy (CE). These classifiers can in theory yield Bayesian discrimination, but in practice they often fail to do so. The authors explain why this happens and identify a number of characteristics that the optimal objective function for training classifiers must have. They show that classification figures of merit (CFM/sub mono/) possess these optimal characteristics, whereas error measures such as MSE and CE do not. The arguments are illustrated with a simple example in which a CFM/sub mono/-trained low-order polynomial neural network approximates Bayesian discrimination on a random scalar with the fewest number of training samples and the minimum functional complexity necessary for the task. A comparable MSE-trained net yields significantly worse discrimination on the same task.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为什么误差测量是训练神经网络模式分类器的次优
以监督方式训练的模式分类器通常使用误差测量目标函数(如均方误差(MSE)或交叉熵(CE))进行训练。这些分类器在理论上可以产生贝叶斯判别,但在实践中它们往往不能做到这一点。作者解释了为什么会发生这种情况,并确定了训练分类器的最佳目标函数必须具有的一些特征。他们表明,优点分类数字(CFM/sub mono/)具有这些最优特征,而误差测量如MSE和CE则没有。用一个简单的例子来说明这些论点,在这个例子中,CFM/次单/训练的低阶多项式神经网络在一个随机标量上近似贝叶斯判别,训练样本数量最少,任务所需的函数复杂性最小。类似的mse训练的网络在相同的任务上产生明显更差的歧视。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nonlinear system identification using diagonal recurrent neural networks Why error measures are sub-optimal for training neural network pattern classifiers Fuzzy clustering using fuzzy competitive learning networks Design and development of a real-time neural processor using the Intel 80170NX ETANN Precision analysis of stochastic pulse encoding algorithms for neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1