Multi-block kernel probabilistic principal component analysis approach and its application for fault detection

Ying Xie, Ying-wei Zhang, Lirong Zhai
{"title":"Multi-block kernel probabilistic principal component analysis approach and its application for fault detection","authors":"Ying Xie, Ying-wei Zhang, Lirong Zhai","doi":"10.1109/CAC.2017.8243530","DOIUrl":null,"url":null,"abstract":"In this paper, a decentralized fault diagnosis approach of complex processes is proposed based on multi-block kernel probabilistic principal component analysis (MBKPPCA). Under the probabilistic modeling framework, this paper introduced MBKPPCA into process monitoring and gave a qualitative analysis on the problems of determining the parameters in MBKPPCA. Efficient Expectation-Maximization algorithms were developed for parameter learning in models analysis and algorithm is proposed and applied to monitor large-scale processes. By mapping nonlinear data into high-dimensional space by kernel function, the method eliminated process nonlinear features. Electro-fused magnesia furnace study was provided to evaluate the modeling and performances of the new method.","PeriodicalId":116872,"journal":{"name":"2017 Chinese Automation Congress (CAC)","volume":"102 32","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Chinese Automation Congress (CAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAC.2017.8243530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a decentralized fault diagnosis approach of complex processes is proposed based on multi-block kernel probabilistic principal component analysis (MBKPPCA). Under the probabilistic modeling framework, this paper introduced MBKPPCA into process monitoring and gave a qualitative analysis on the problems of determining the parameters in MBKPPCA. Efficient Expectation-Maximization algorithms were developed for parameter learning in models analysis and algorithm is proposed and applied to monitor large-scale processes. By mapping nonlinear data into high-dimensional space by kernel function, the method eliminated process nonlinear features. Electro-fused magnesia furnace study was provided to evaluate the modeling and performances of the new method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多块核概率主成分分析法及其在故障检测中的应用
提出了一种基于多块核概率主成分分析(MBKPPCA)的复杂过程分散故障诊断方法。在概率建模框架下,将MBKPPCA引入到过程监控中,并对MBKPPCA中参数的确定问题进行了定性分析。针对模型分析中的参数学习,提出了高效的期望最大化算法,并将其应用于大规模过程的监控。该方法通过核函数将非线性数据映射到高维空间,消除了过程非线性特征。通过对电熔镁炉的研究,对新方法的建模和性能进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Behavioral profiling for employees using social media: A case study based on wechat Exploring new mechanisms for demand-side platforms in real time bidding markets Phase retrieval technology based on multi-angle tilt light modulation Multi-block kernel probabilistic principal component analysis approach and its application for fault detection Fault detection method based on margin statistics of generalized non-negative matrix factorization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1