Dynamic fur on mobile using textured offset surfaces

Shaohui Jiao, Xiaofeng Tong, Eric Li, Wenlong Li
{"title":"Dynamic fur on mobile using textured offset surfaces","authors":"Shaohui Jiao, Xiaofeng Tong, Eric Li, Wenlong Li","doi":"10.1145/2787626.2787649","DOIUrl":null,"url":null,"abstract":"Fur simulation is crucial in many graphic applications since it can greatly enhance the realistic visual effect of virtual objects, e.g. animal avatars. However, due to its high computational cost of massive fur strands processing and motion complexity, dynamic fur is regarded as a challenging task, especially on the mobile platforms with low computing power. In order to support real-time fur rendering in mobile applications, we propose a novel method called textured offset surfaces (TOS). In particular, the furry surface is represented by a set of offset surfaces, as shown in Figure 1(a). The offset surfaces are shifted outwards from the original mesh. Each offset surface is textured with scattering density (red rectangles in Figure 1(a)) to implicitly represent the fur geometry, whose value can be changed by texture warping to simulate the fur animation. In order to achieve high quality anisotropic illumination result, as shown in Figure 1(b), Kajiya/Banks lighting model is employed in the rendering phase.","PeriodicalId":269034,"journal":{"name":"ACM SIGGRAPH 2015 Posters","volume":" 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGGRAPH 2015 Posters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2787626.2787649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fur simulation is crucial in many graphic applications since it can greatly enhance the realistic visual effect of virtual objects, e.g. animal avatars. However, due to its high computational cost of massive fur strands processing and motion complexity, dynamic fur is regarded as a challenging task, especially on the mobile platforms with low computing power. In order to support real-time fur rendering in mobile applications, we propose a novel method called textured offset surfaces (TOS). In particular, the furry surface is represented by a set of offset surfaces, as shown in Figure 1(a). The offset surfaces are shifted outwards from the original mesh. Each offset surface is textured with scattering density (red rectangles in Figure 1(a)) to implicitly represent the fur geometry, whose value can be changed by texture warping to simulate the fur animation. In order to achieve high quality anisotropic illumination result, as shown in Figure 1(b), Kajiya/Banks lighting model is employed in the rendering phase.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在移动设备上使用纹理偏移表面的动态皮毛
皮毛模拟在许多图形应用中是至关重要的,因为它可以极大地增强虚拟对象的逼真视觉效果,例如动物化身。然而,由于大量皮毛处理的计算成本和运动复杂性,动态皮毛被认为是一项具有挑战性的任务,特别是在计算能力较低的移动平台上。为了支持移动应用中的实时渲染,我们提出了一种称为纹理偏移曲面(TOS)的新方法。其中,毛茸茸的表面由一组偏移面表示,如图1(a)所示。偏移曲面从原始网格向外移动。每个偏移表面都使用散射密度(图1(a)中的红色矩形)进行纹理处理,以隐式地表示毛皮几何形状,其值可以通过纹理翘曲来改变,以模拟毛皮动画。为了获得高质量的各向异性照明效果,如图1(b)所示,在渲染阶段采用Kajiya/Banks照明模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic fur on mobile using textured offset surfaces Continuous and automatic registration of live RGBD video streams with partial overlapping views Mobile haptic system design to evoke relaxation through paced breathing Virtual headcam: pan/tilt mirror-based facial performance tracking Burning the medial axis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1