Classification method for colored natural textures using Gabor filtering

Leena Lepistö, I. Kunttu, J. Autio, A. Visa
{"title":"Classification method for colored natural textures using Gabor filtering","authors":"Leena Lepistö, I. Kunttu, J. Autio, A. Visa","doi":"10.1109/ICIAP.2003.1234082","DOIUrl":null,"url":null,"abstract":"The common methods of texture analysis are based on the gray levels of the texture image. However, the use of color information improves the classification accuracy of colored textures. In the classification of non-homogenous natural textures, human perception of texture and color are important. Therefore, the color space and texture analysis method should be selected to correspond to human vision. We present an effective method for the classification of colored natural textures. The natural textures are often non-homogeneous and directional, which makes them difficult to classify. In our method, multiresolution Gabor filtering is applied to the color components of the texture image in HSI color space. Using this method, the colored texture images can be classified in multiple scales and orientations. Experimental results show that the use of color information improves the classification of natural textures.","PeriodicalId":218076,"journal":{"name":"12th International Conference on Image Analysis and Processing, 2003.Proceedings.","volume":" 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"12th International Conference on Image Analysis and Processing, 2003.Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAP.2003.1234082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

The common methods of texture analysis are based on the gray levels of the texture image. However, the use of color information improves the classification accuracy of colored textures. In the classification of non-homogenous natural textures, human perception of texture and color are important. Therefore, the color space and texture analysis method should be selected to correspond to human vision. We present an effective method for the classification of colored natural textures. The natural textures are often non-homogeneous and directional, which makes them difficult to classify. In our method, multiresolution Gabor filtering is applied to the color components of the texture image in HSI color space. Using this method, the colored texture images can be classified in multiple scales and orientations. Experimental results show that the use of color information improves the classification of natural textures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Gabor滤波的彩色自然纹理分类方法
常用的纹理分析方法是基于纹理图像的灰度值。然而,颜色信息的使用提高了彩色纹理的分类精度。在非均质自然纹理的分类中,人对纹理和颜色的感知是很重要的。因此,色彩空间和纹理分析方法的选择应符合人的视觉。提出了一种有效的彩色自然纹理分类方法。自然纹理通常是非均匀和定向的,这使得它们难以分类。该方法在HSI颜色空间中对纹理图像的颜色分量进行多分辨率Gabor滤波。利用该方法可以对彩色纹理图像进行多尺度、多方向的分类。实验结果表明,颜色信息的使用改善了自然纹理的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classification method for colored natural textures using Gabor filtering Perceptive visual texture classification and retrieval Deferring range/domain comparisons in fractal image compression Modeling the world: the virtualization pipeline A graphics hardware implementation of the generalized Hough transform for fast object recognition, scale, and 3D pose detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1