A graphics hardware implementation of the generalized Hough transform for fast object recognition, scale, and 3D pose detection

R. Strzodka, Ivo Ihrke, M. Magnor
{"title":"A graphics hardware implementation of the generalized Hough transform for fast object recognition, scale, and 3D pose detection","authors":"R. Strzodka, Ivo Ihrke, M. Magnor","doi":"10.1109/ICIAP.2003.1234048","DOIUrl":null,"url":null,"abstract":"The generalized Hough transform constitutes a wellknown approach to object recognition and pose detection. To attain reliable detection results, however, a very large number of candidate object poses and scale factors need to be considered. We employ an inexpensive, consumer-market graphics-card as the \"poor man's\" parallel processing system. We describe the implementation of a fast and enhanced version of the generalized Hough transform on graphics hardware. Thanks to the high bandwidth of on-board texture memory, a single pose can be evaluated in less than 3 ms, independent of the number of edge pixels in the image. From known object geometry, our hardware-accelerated generalized Hough transform algorithm is capable of detecting an object's 3D pose, scale, and position in the image within less than one minute. A good pose estimation is even delivered in less than 10 seconds.","PeriodicalId":218076,"journal":{"name":"12th International Conference on Image Analysis and Processing, 2003.Proceedings.","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"60","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"12th International Conference on Image Analysis and Processing, 2003.Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAP.2003.1234048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 60

Abstract

The generalized Hough transform constitutes a wellknown approach to object recognition and pose detection. To attain reliable detection results, however, a very large number of candidate object poses and scale factors need to be considered. We employ an inexpensive, consumer-market graphics-card as the "poor man's" parallel processing system. We describe the implementation of a fast and enhanced version of the generalized Hough transform on graphics hardware. Thanks to the high bandwidth of on-board texture memory, a single pose can be evaluated in less than 3 ms, independent of the number of edge pixels in the image. From known object geometry, our hardware-accelerated generalized Hough transform algorithm is capable of detecting an object's 3D pose, scale, and position in the image within less than one minute. A good pose estimation is even delivered in less than 10 seconds.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一个图形硬件实现的广义霍夫变换快速对象识别,规模,和三维姿态检测
广义霍夫变换是一种众所周知的目标识别和姿态检测方法。然而,为了获得可靠的检测结果,需要考虑大量的候选目标姿态和尺度因素。我们采用一种廉价的、面向消费者市场的显卡作为“穷人”的并行处理系统。我们描述了一种快速增强的广义霍夫变换在图形硬件上的实现。由于机载纹理存储器的高带宽,可以在不到3毫秒的时间内评估单个姿态,而与图像中边缘像素的数量无关。根据已知的物体几何形状,我们的硬件加速广义霍夫变换算法能够在不到一分钟的时间内检测到物体在图像中的3D姿态、比例和位置。一个好的姿势估计甚至可以在不到10秒的时间内完成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classification method for colored natural textures using Gabor filtering Perceptive visual texture classification and retrieval Deferring range/domain comparisons in fractal image compression Modeling the world: the virtualization pipeline A graphics hardware implementation of the generalized Hough transform for fast object recognition, scale, and 3D pose detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1