Drivable space characterization using automotive lidar and georeferenced map information

J. Moras, S. R. Florez, Vincent Drevelle, G. Dherbomez, V. Berge-Cherfaoui, P. Bonnifait
{"title":"Drivable space characterization using automotive lidar and georeferenced map information","authors":"J. Moras, S. R. Florez, Vincent Drevelle, G. Dherbomez, V. Berge-Cherfaoui, P. Bonnifait","doi":"10.1109/IVS.2012.6232252","DOIUrl":null,"url":null,"abstract":"The characterization in real-time of the drivable space in front of the vehicle is a key issue for safe autonomous navigation or driving assistance. This paper presents a method that uses a lidar (a multilayer laser scanner) integrated in the front bumper of an automotive vehicle. A grid processing is first applied to detect and localize objects in the immediate environment after having compensated the movement of the vehicle. Accurate map information is then introduced in the perception scheme to refine the characterization of the drivable space. The paper details the different processing stages necessary to implement this method and presents the design of the system that has been prototyped on board an experimental vehicle. We report real experiments carried out in challenging urban environments to illustrate the performance of this approach which has been evaluated thanks to a precise retro-projection of the estimated drivable space in a wide-angle scene camera.","PeriodicalId":402389,"journal":{"name":"2012 IEEE Intelligent Vehicles Symposium","volume":" 17","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Intelligent Vehicles Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2012.6232252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

The characterization in real-time of the drivable space in front of the vehicle is a key issue for safe autonomous navigation or driving assistance. This paper presents a method that uses a lidar (a multilayer laser scanner) integrated in the front bumper of an automotive vehicle. A grid processing is first applied to detect and localize objects in the immediate environment after having compensated the movement of the vehicle. Accurate map information is then introduced in the perception scheme to refine the characterization of the drivable space. The paper details the different processing stages necessary to implement this method and presents the design of the system that has been prototyped on board an experimental vehicle. We report real experiments carried out in challenging urban environments to illustrate the performance of this approach which has been evaluated thanks to a precise retro-projection of the estimated drivable space in a wide-angle scene camera.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用汽车激光雷达和地理参考地图信息表征可驾驶空间
车辆前方可驾驶空间的实时表征是安全自主导航或驾驶辅助的关键问题。本文提出了一种将激光雷达(一种多层激光扫描仪)集成在汽车前保险杠上的方法。在补偿车辆的运动后,首先应用网格处理来检测和定位周围环境中的物体。然后在感知方案中引入精确的地图信息,以细化可驾驶空间的表征。本文详细介绍了实现该方法所需的不同处理阶段,并介绍了该系统的设计,该系统已在实验车上进行了原型设计。我们报告了在具有挑战性的城市环境中进行的真实实验,以说明该方法的性能,该方法已通过广角场景摄像机对估计的可驾驶空间进行精确的反向投影进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal experts' knowledge selection for intelligent driving risk detection systems Drivable space characterization using automotive lidar and georeferenced map information Manual convoying of automated urban vehicles relying on monocular vision Probabilistic trajectory prediction with Gaussian mixture models Field of safe travel: Using location and motion information to increase driver acceptance of pedestrian alerts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1