An adaptive vector quantization based on neural network

Qi Bensheng, Qi Jianqin, AnPin, Zhang Dian-cheng
{"title":"An adaptive vector quantization based on neural network","authors":"Qi Bensheng, Qi Jianqin, AnPin, Zhang Dian-cheng","doi":"10.1109/ICSIGP.1996.566588","DOIUrl":null,"url":null,"abstract":"Some vector quantization algorithm are first surveyed. Then, an adaptive vector quantization method for image coding based on a neural network is proposed. This method first partitions the image into a subimage and transforms them with the DCT, and then classifies and encodes them in the transformed domain using frequency sensitive competitive learning (FSCL). The experimental results show that this VQ method has no local region distortion and a high compression ratio.","PeriodicalId":385432,"journal":{"name":"Proceedings of Third International Conference on Signal Processing (ICSP'96)","volume":"132 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Third International Conference on Signal Processing (ICSP'96)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIGP.1996.566588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Some vector quantization algorithm are first surveyed. Then, an adaptive vector quantization method for image coding based on a neural network is proposed. This method first partitions the image into a subimage and transforms them with the DCT, and then classifies and encodes them in the transformed domain using frequency sensitive competitive learning (FSCL). The experimental results show that this VQ method has no local region distortion and a high compression ratio.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经网络的自适应矢量量化
首先介绍了一些矢量量化算法。然后,提出了一种基于神经网络的自适应矢量量化图像编码方法。该方法首先将图像分割成一个子图像,并对其进行DCT变换,然后在变换后的域中使用频率敏感竞争学习(FSCL)对其进行分类编码。实验结果表明,该方法没有局部失真,具有较高的压缩比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An adaptive vector quantization based on neural network Fast convergence algorithm for wavelet neural network used for signal or function approximation The study of ultrasonic imaging system for austenitic welds testing Identification of pelagic eggs by image analysis Using ANN for the recognition of vibration signals of off-shore equipment's failure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1