MMSTP: Multi-modal Spatiotemporal Feature Fusion Network for Precipitation Prediction

Tianbao Zhang, Hongbin Wang, D. Niu, Chunlei Shi, Xisong Chen, Yulong Jin
{"title":"MMSTP: Multi-modal Spatiotemporal Feature Fusion Network for Precipitation Prediction","authors":"Tianbao Zhang, Hongbin Wang, D. Niu, Chunlei Shi, Xisong Chen, Yulong Jin","doi":"10.1109/ISAS59543.2023.10164452","DOIUrl":null,"url":null,"abstract":"Precipitation prediction, especially accurate rainstorm warning, is a fundamental research direction in preventing major natural disasters and is of great significance. Despite the emergence of numerous deep learning models in recent years, existing CNN-based methods often struggle to effectively extract global spatiotemporal features due to limitations in the convolution kernel, greatly reducing the model’s expressive power. Additionally, relying solely on radar echo maps as a single data source also limits the accuracy of short-term precipitation prediction. In this work, we introduce a multi-modal spatiotemporal feature fusion framework called MMSTP, which utilizes multi-modal data information from satellite images and radar echo maps. The encoder module of MMSTP is designed to combine the advantages of CNN and Transformer in local feature extraction and global information perception, respectively, and uses self-attention mechanism to model temporal features and perform multi-modal fusion. MMSTP is an end-to-end multi-modal, multi-scale, and multi-frame feature fusion framework that can significantly improve the accuracy of short-term precipitation prediction. It provides a new approach to spatiotemporal sequence forecasting problems. Based on our experimental results, MMSTP surpasses the state-of-the-art (SOTA) performance on benchmark datasets.","PeriodicalId":199115,"journal":{"name":"2023 6th International Symposium on Autonomous Systems (ISAS)","volume":" 10","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 6th International Symposium on Autonomous Systems (ISAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAS59543.2023.10164452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Precipitation prediction, especially accurate rainstorm warning, is a fundamental research direction in preventing major natural disasters and is of great significance. Despite the emergence of numerous deep learning models in recent years, existing CNN-based methods often struggle to effectively extract global spatiotemporal features due to limitations in the convolution kernel, greatly reducing the model’s expressive power. Additionally, relying solely on radar echo maps as a single data source also limits the accuracy of short-term precipitation prediction. In this work, we introduce a multi-modal spatiotemporal feature fusion framework called MMSTP, which utilizes multi-modal data information from satellite images and radar echo maps. The encoder module of MMSTP is designed to combine the advantages of CNN and Transformer in local feature extraction and global information perception, respectively, and uses self-attention mechanism to model temporal features and perform multi-modal fusion. MMSTP is an end-to-end multi-modal, multi-scale, and multi-frame feature fusion framework that can significantly improve the accuracy of short-term precipitation prediction. It provides a new approach to spatiotemporal sequence forecasting problems. Based on our experimental results, MMSTP surpasses the state-of-the-art (SOTA) performance on benchmark datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向降水预测的多模态时空特征融合网络
降水预报特别是暴雨准确预警是预防重大自然灾害的基础性研究方向,具有重要意义。尽管近年来出现了许多深度学习模型,但由于卷积核的限制,现有的基于cnn的方法往往难以有效地提取全局时空特征,大大降低了模型的表达能力。此外,单纯依赖雷达回波图作为单一数据源也限制了短期降水预报的准确性。在这项工作中,我们引入了一种称为MMSTP的多模态时空特征融合框架,该框架利用来自卫星图像和雷达回波地图的多模态数据信息。MMSTP的编码器模块分别结合了CNN和Transformer在局部特征提取和全局信息感知方面的优势,利用自注意机制对时序特征进行建模并进行多模态融合。MMSTP是端到端的多模态、多尺度、多帧特征融合框架,能够显著提高短期降水预报的精度。为解决时空序列预测问题提供了一种新的方法。根据我们的实验结果,MMSTP在基准数据集上的性能超过了最先进的SOTA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A new type of video text automatic recognition method and its application in film and television works H∞ state feedback control for fuzzy singular Markovian jump systems with constant time delays and impulsive perturbations MMSTP: Multi-modal Spatiotemporal Feature Fusion Network for Precipitation Prediction Digital twin based bearing fault simulation modeling strategy and display dynamics End-to-End Model-Based Gait Recognition with Matching Module Based on Graph Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1