A Probabilistic Model for Service Clustering - Jointly Using Service Invocation and Service Characteristics

Dongxiao He, Xue Yang, Zhiyong Feng, Shizhan Chen, Keman Huang, Zhenzhu Wang, F. Fogelman-Soulié
{"title":"A Probabilistic Model for Service Clustering - Jointly Using Service Invocation and Service Characteristics","authors":"Dongxiao He, Xue Yang, Zhiyong Feng, Shizhan Chen, Keman Huang, Zhenzhu Wang, F. Fogelman-Soulié","doi":"10.1109/ICWS.2018.00047","DOIUrl":null,"url":null,"abstract":"Service clustering is the foundation of service discovery, recommendation and composition. Most of the existing methods mainly use service attribute information and ignore the semantic-based invocation relationships among service users. In fact, mutual invocation relationships between services occur on operations of the corresponding services, while service attributes are the whole service description. Our main challenge may be to effectively combine these two kinds of data for service clustering. To address this issue, we propose a new probabilistic generative model which contains two closely connected parts, one characterizing operation community memberships by using operation invocation relationships, and the other characterizing service cluster memberships by utilizing service attributes. The correlations between these two parts are characterized by the relationships between operation communities and service clusters. To train this model, we provide a nested expectation-maximization algorithm. Experimental results show its superior performance over the existing methods for service clustering.","PeriodicalId":231056,"journal":{"name":"2018 IEEE International Conference on Web Services (ICWS)","volume":" 18","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Web Services (ICWS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWS.2018.00047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Service clustering is the foundation of service discovery, recommendation and composition. Most of the existing methods mainly use service attribute information and ignore the semantic-based invocation relationships among service users. In fact, mutual invocation relationships between services occur on operations of the corresponding services, while service attributes are the whole service description. Our main challenge may be to effectively combine these two kinds of data for service clustering. To address this issue, we propose a new probabilistic generative model which contains two closely connected parts, one characterizing operation community memberships by using operation invocation relationships, and the other characterizing service cluster memberships by utilizing service attributes. The correlations between these two parts are characterized by the relationships between operation communities and service clusters. To train this model, we provide a nested expectation-maximization algorithm. Experimental results show its superior performance over the existing methods for service clustering.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
服务集群的概率模型——联合使用服务调用和服务特征
服务聚类是服务发现、推荐和组合的基础。现有的方法大多使用服务属性信息,忽略了服务用户之间基于语义的调用关系。实际上,服务之间的相互调用关系发生在相应服务的操作上,而服务属性是整个服务描述。我们的主要挑战可能是有效地将这两种数据结合起来用于服务集群。为了解决这一问题,我们提出了一种新的概率生成模型,该模型包含两个紧密相连的部分,一个是通过使用操作调用关系来表征操作社区成员关系,另一个是通过使用服务属性来表征服务集群成员关系。这两个部分之间的相关性表现为运营社区和服务集群之间的关系。为了训练这个模型,我们提供了一个嵌套的期望最大化算法。实验结果表明,该方法优于现有的服务聚类方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
相关文献
The causal role of gastroesophageal reflux disease in anxiety disorders and depression: A bidirectional Mendelian randomization study.
IF 4.7 3区 医学Frontiers in PsychiatryPub Date : 2023-01-01 DOI: 10.3389/fpsyt.2023.1135923
Youjie Zeng, Si Cao, Heng Yang
The role of circulating metabolites and gut microbiome in hypertrophic scar: a two-sample Mendelian randomization study
IF 1.8 4区 医学Archives of Dermatological ResearchPub Date : 2024-06-01 DOI: 10.1007/s00403-024-03116-8
Xinwei Cheng, Bin Cheng, Rui Jin, Hongkun Zheng, Jia Zhou, Shengzhou Shan
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Web Service for Author Name Disambiguation in Scholarly Databases A Probabilistic Model for Service Clustering - Jointly Using Service Invocation and Service Characteristics Confidential Business Process Execution on Blockchain Title Page i Semantic-Based Information Sharing in Vehicular Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1