Clustering-based simultaneous task and voltage scheduling for NoC systems

Yifang Liu, Yu Yang, Jiang Hu
{"title":"Clustering-based simultaneous task and voltage scheduling for NoC systems","authors":"Yifang Liu, Yu Yang, Jiang Hu","doi":"10.5555/2133429.2133488","DOIUrl":null,"url":null,"abstract":"Networks-on-chip (NoC) is emerging as a promising communication structure, which is scalable with respect to chip complexity. Meanwhile, latest chip designs are increasingly leveraging multiple voltage-frequency domains for energy-efficiency improvement. In this work, we propose a simultaneous task and voltage scheduling algorithm for energy minimization in NoC based designs. The energy-latency tradeoff is handled by Lagrangian relaxation. The core algorithm is a clustering based approach which not only assigns voltage levels and starting time to each task (or Processing Element) but also naturally finds voltage-frequency clusters. Compared to a recent previous work, which performs task scheduling and voltage assignment sequentially, our method leads to an average of 20% energy reduction.","PeriodicalId":344703,"journal":{"name":"2010 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":" 11","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5555/2133429.2133488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Networks-on-chip (NoC) is emerging as a promising communication structure, which is scalable with respect to chip complexity. Meanwhile, latest chip designs are increasingly leveraging multiple voltage-frequency domains for energy-efficiency improvement. In this work, we propose a simultaneous task and voltage scheduling algorithm for energy minimization in NoC based designs. The energy-latency tradeoff is handled by Lagrangian relaxation. The core algorithm is a clustering based approach which not only assigns voltage levels and starting time to each task (or Processing Element) but also naturally finds voltage-frequency clusters. Compared to a recent previous work, which performs task scheduling and voltage assignment sequentially, our method leads to an average of 20% energy reduction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于聚类的NoC系统同步任务与电压调度
片上网络(NoC)作为一种有前途的通信结构正在兴起,它在芯片复杂性方面具有可扩展性。同时,最新的芯片设计越来越多地利用多个电压频率域来提高能效。在这项工作中,我们提出了一种同步任务和电压调度算法,用于基于NoC的设计中的能量最小化。能量延迟的权衡是由拉格朗日弛豫来处理的。核心算法是一种基于聚类的方法,它不仅为每个任务(或处理单元)分配电压水平和开始时间,而且自然地找到电压频率聚类。与之前的一项工作相比,该方法可以依次执行任务调度和电压分配,平均减少20%的能量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Clustering-based simultaneous task and voltage scheduling for NoC systems Trace signal selection to enhance timing and logic visibility in post-silicon validation Application-Aware diagnosis of runtime hardware faults Flexible interpolation with local proof transformations Recent research development in flip-chip routing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1