Meta Reinforcement Learning Based Underwater Manipulator Control

Jiyoun Moon, Sung-Hoon Bae, Michael Cashmore
{"title":"Meta Reinforcement Learning Based Underwater Manipulator Control","authors":"Jiyoun Moon, Sung-Hoon Bae, Michael Cashmore","doi":"10.23919/ICCAS52745.2021.9650009","DOIUrl":null,"url":null,"abstract":"Robots have garnered significant attention owing to their advantages in terms of replacing human labor under hazardous environments. In particular, because underwater construction robots can perform various tasks that are highly dangerous under deep sea environments, the development of manipulator control technology for these underwater robots is crucial. In this study, we therefore introduce an underwater manipulator control method based on meta reinforcement learning. Specifically, we construct a real-world underwater robot manipulator environment using ROS Gazebo and conduct simulations for the testing and verification of the proposed method.","PeriodicalId":411064,"journal":{"name":"2021 21st International Conference on Control, Automation and Systems (ICCAS)","volume":" 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 21st International Conference on Control, Automation and Systems (ICCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICCAS52745.2021.9650009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Robots have garnered significant attention owing to their advantages in terms of replacing human labor under hazardous environments. In particular, because underwater construction robots can perform various tasks that are highly dangerous under deep sea environments, the development of manipulator control technology for these underwater robots is crucial. In this study, we therefore introduce an underwater manipulator control method based on meta reinforcement learning. Specifically, we construct a real-world underwater robot manipulator environment using ROS Gazebo and conduct simulations for the testing and verification of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于元强化学习的水下机械臂控制
机器人因其在危险环境下替代人类劳动的优势而备受关注。特别是由于水下施工机器人在深海环境下可以执行各种高度危险的任务,因此对这些水下机器人而言,机械臂控制技术的发展至关重要。因此,在本研究中,我们引入了一种基于元强化学习的水下机械臂控制方法。具体而言,我们使用ROS Gazebo构建了一个真实的水下机器人操纵环境,并进行了仿真,对所提出的方法进行了测试和验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Meta Reinforcement Learning Based Underwater Manipulator Control Object Detection and Tracking System with Improved DBSCAN Clustering using Radar on Unmanned Surface Vehicle A Method for Evaluating of Asymmetry on Cleft Lip Using Symmetry Plane Average Blurring-based Anomaly Detection for Vision-based Mask Inspection Systems Design and Fabrication of a Robotic Knee-Type Prosthetic Leg with a Two-Way Hydraulic Cylinder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1