Time Series Prediction Based on Online Learning

Q. Song
{"title":"Time Series Prediction Based on Online Learning","authors":"Q. Song","doi":"10.1109/ICMLA.2015.234","DOIUrl":null,"url":null,"abstract":"We propose a robust recurrent kernel online learning (RRKOL) algorithm based on the celebrated real-time recurrent learning (RTRL) approach that exploits the kernel trick in a recurrent online training manner. The RRKOL algorithm automatically weights the regularized term in the recurrent loss function such that we not only minimize the estimation error but also improve the generalization performance via sparsification with simulation support.","PeriodicalId":288427,"journal":{"name":"2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA)","volume":"311 11","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2015.234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a robust recurrent kernel online learning (RRKOL) algorithm based on the celebrated real-time recurrent learning (RTRL) approach that exploits the kernel trick in a recurrent online training manner. The RRKOL algorithm automatically weights the regularized term in the recurrent loss function such that we not only minimize the estimation error but also improve the generalization performance via sparsification with simulation support.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于在线学习的时间序列预测
我们提出了一种鲁棒的循环核在线学习(RRKOL)算法,该算法基于著名的实时循环学习(RTRL)方法,以循环在线训练的方式利用核技巧。RRKOL算法自动对循环损失函数中的正则化项进行加权,不仅使估计误差最小化,而且通过仿真支持的稀疏化提高了泛化性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prediction of SPEI Using MLR and ANN: A Case Study for Wilsons Promontory Station in Victoria Statistical Downscaling of Climate Change Scenarios of Rainfall and Temperature over Indira Sagar Canal Command Area in Madhya Pradesh, India Lambda Consensus Clustering Time Series Prediction Based on Online Learning NewsCubeSum: A Personalized Multidimensional News Update Summarization System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1