Prediction of SPEI Using MLR and ANN: A Case Study for Wilsons Promontory Station in Victoria

Soukayna Mouatadid, R. Deo, J. Adamowski
{"title":"Prediction of SPEI Using MLR and ANN: A Case Study for Wilsons Promontory Station in Victoria","authors":"Soukayna Mouatadid, R. Deo, J. Adamowski","doi":"10.1109/ICMLA.2015.87","DOIUrl":null,"url":null,"abstract":"The prediction of drought is of major importance in climate-related studies, hydrologic engineering, wildlife or agricultural studies. This study explores the ability of two machine learning methods to predict 1, 3, 6 and 12 months standardized precipitation and evapotranspiration index (SPEI) for the Wilsons Promontory station in Eastern Australia. The two methods are multiple linear regression (MLR) and artificial neural networks (ANN). The data-driven models were based on combinations of the input variables: mean precipitations, mean, maximum and minimum temperatures and evapotranspiration, for data between 1915 and 2012. Two performance metrics were used to compare the performance of the optimum MLR and ANN models: the coefficient of determination (R2) and the root mean square error (RMSE). It was found that ANN provided greater accuracy than MLR in forecasting the 1, 3, 6 and 12 months SPEI.","PeriodicalId":288427,"journal":{"name":"2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2015.87","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The prediction of drought is of major importance in climate-related studies, hydrologic engineering, wildlife or agricultural studies. This study explores the ability of two machine learning methods to predict 1, 3, 6 and 12 months standardized precipitation and evapotranspiration index (SPEI) for the Wilsons Promontory station in Eastern Australia. The two methods are multiple linear regression (MLR) and artificial neural networks (ANN). The data-driven models were based on combinations of the input variables: mean precipitations, mean, maximum and minimum temperatures and evapotranspiration, for data between 1915 and 2012. Two performance metrics were used to compare the performance of the optimum MLR and ANN models: the coefficient of determination (R2) and the root mean square error (RMSE). It was found that ANN provided greater accuracy than MLR in forecasting the 1, 3, 6 and 12 months SPEI.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于MLR和ANN的SPEI预测:以维多利亚Wilsons Promontory站为例
干旱预测在气候相关研究、水文工程、野生动物或农业研究中具有重要意义。本研究探讨了两种机器学习方法预测澳大利亚东部威尔逊海岬站1、3、6和12个月标准化降水和蒸散指数(SPEI)的能力。这两种方法是多元线性回归(MLR)和人工神经网络(ANN)。数据驱动的模型基于1915年至2012年数据的输入变量组合:平均降水量、平均、最高和最低温度以及蒸散量。使用两个性能指标来比较最优MLR和ANN模型的性能:决定系数(R2)和均方根误差(RMSE)。结果表明,人工神经网络对1、3、6、12个月SPEI的预测准确率高于MLR。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prediction of SPEI Using MLR and ANN: A Case Study for Wilsons Promontory Station in Victoria Statistical Downscaling of Climate Change Scenarios of Rainfall and Temperature over Indira Sagar Canal Command Area in Madhya Pradesh, India Lambda Consensus Clustering Time Series Prediction Based on Online Learning NewsCubeSum: A Personalized Multidimensional News Update Summarization System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1