Precoding with the Assistance of Attitude Information in Millimeter Wave MIMO System

Shiyu Zhou, Li Chen, Weidong Wang
{"title":"Precoding with the Assistance of Attitude Information in Millimeter Wave MIMO System","authors":"Shiyu Zhou, Li Chen, Weidong Wang","doi":"10.1109/WCNC45663.2020.9120533","DOIUrl":null,"url":null,"abstract":"Digital beamforming (DBF) is considered as an efficient method to overcome the high propagation loss of millimeter wave (mmWave) communication, but the acquisition of channel state information (CSI) brings huge training overhead, especially in high mobility scenarios. To tackle this challenge, we consider using attitude information from motion sensors to reduce the training overhead of DBF in this paper. We first analyze the characteristics of mmWave uplink channel when the attitude of user equipment (UE) rotates, and it shows that only the precoder needs to be redesigned after the rotation. Therefore, we develop a novel attitude information aided precoding algorithm, which approaches the performance of conventional singular value decomposition (SVD) algorithm. The proposed algorithm reduces the channel estimation and feedback overhead significantly compared to the conventional one. Finally, the simulation results show that the proposed algorithms allow mmWave systems to approach their performance limits.","PeriodicalId":415064,"journal":{"name":"2020 IEEE Wireless Communications and Networking Conference (WCNC)","volume":"14 19","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Wireless Communications and Networking Conference (WCNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCNC45663.2020.9120533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Digital beamforming (DBF) is considered as an efficient method to overcome the high propagation loss of millimeter wave (mmWave) communication, but the acquisition of channel state information (CSI) brings huge training overhead, especially in high mobility scenarios. To tackle this challenge, we consider using attitude information from motion sensors to reduce the training overhead of DBF in this paper. We first analyze the characteristics of mmWave uplink channel when the attitude of user equipment (UE) rotates, and it shows that only the precoder needs to be redesigned after the rotation. Therefore, we develop a novel attitude information aided precoding algorithm, which approaches the performance of conventional singular value decomposition (SVD) algorithm. The proposed algorithm reduces the channel estimation and feedback overhead significantly compared to the conventional one. Finally, the simulation results show that the proposed algorithms allow mmWave systems to approach their performance limits.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于姿态信息的毫米波MIMO系统预编码
数字波束形成(DBF)被认为是克服毫米波通信高传播损耗的有效方法,但信道状态信息(CSI)的获取带来了巨大的训练开销,特别是在高移动场景下。为了解决这一问题,本文考虑使用运动传感器的姿态信息来减少DBF的训练开销。首先分析了用户设备(UE)姿态旋转时毫米波上行信道的特性,结果表明旋转后只需要重新设计预编码器。因此,我们开发了一种新的姿态信息辅助预编码算法,其性能接近传统的奇异值分解(SVD)算法。与传统算法相比,该算法显著降低了信道估计和反馈开销。最后,仿真结果表明,所提出的算法使毫米波系统接近其性能极限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Precoding with the Assistance of Attitude Information in Millimeter Wave MIMO System Performance Analysis of Temporal Correlation in Finite-Area UAV Networks with LoS/NLoS Location-Privacy-Aware Service Migration in Mobile Edge Computing Filter Bank Multicarrier Transmission Based on the Discrete Hartley Transform Resource Allocation and Throughput Maximization in Decoupled 5G
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1