Incremental learning of ensemble classifiers on ECG data

Jan Macek
{"title":"Incremental learning of ensemble classifiers on ECG data","authors":"Jan Macek","doi":"10.1109/CBMS.2005.69","DOIUrl":null,"url":null,"abstract":"We develop novel methods of incremental learning based on the bagging and boosting approaches to ensemble learning. Our method combines perceptron decision trees obtained with a margin maximizing algorithm into an ensemble in an incremental way. We demonstrate practical functionality of our algorithm on the task of ECG records classification. Our results are promising since comparable or superior accuracy is achieved when compared with results obtained by other existing methods of classification of ECG records, namely with the C5.0 decision tree algorithm.","PeriodicalId":119367,"journal":{"name":"18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2005.69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

We develop novel methods of incremental learning based on the bagging and boosting approaches to ensemble learning. Our method combines perceptron decision trees obtained with a margin maximizing algorithm into an ensemble in an incremental way. We demonstrate practical functionality of our algorithm on the task of ECG records classification. Our results are promising since comparable or superior accuracy is achieved when compared with results obtained by other existing methods of classification of ECG records, namely with the C5.0 decision tree algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
心电数据集成分类器的增量学习
我们在集成学习的bagging和boosting方法的基础上开发了新的增量学习方法。我们的方法将边际最大化算法得到的感知器决策树以增量的方式组合成一个集合。我们在心电记录分类任务上展示了算法的实际功能。我们的结果是有希望的,因为与其他现有的心电记录分类方法(即使用C5.0决策树算法)获得的结果相比,我们的结果达到了相当或更高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Markov model-based clustering for efficient patient care Incremental learning of ensemble classifiers on ECG data Grid-enabled workflows for data intensive medical applications Case-based tissue classification for monitoring leg ulcer healing Optimisation of neural network training through pre-establishment of synaptic weights applied to body surface mapping classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1