Grid-enabled workflows for data intensive medical applications

T. Glatard, J. Montagnat, X. Pennec
{"title":"Grid-enabled workflows for data intensive medical applications","authors":"T. Glatard, J. Montagnat, X. Pennec","doi":"10.1109/CBMS.2005.61","DOIUrl":null,"url":null,"abstract":"Data intensive medical image processing applications can easily benefit from grid capabilities. However, the setting up of complex medical experiments is not straight forward on current grid infrastructures. To ease such experiments we are developing a generic and grid-enabled workflow framework, relying on current standards. We show results on a concrete application to medical image registration assessment. We discuss the limitations induced by current standards and tools and how they were overcome for deploying the application.","PeriodicalId":119367,"journal":{"name":"18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05)","volume":"42 13","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2005.61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

Abstract

Data intensive medical image processing applications can easily benefit from grid capabilities. However, the setting up of complex medical experiments is not straight forward on current grid infrastructures. To ease such experiments we are developing a generic and grid-enabled workflow framework, relying on current standards. We show results on a concrete application to medical image registration assessment. We discuss the limitations induced by current standards and tools and how they were overcome for deploying the application.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于数据密集型医疗应用程序的支持网格的工作流
数据密集型医学图像处理应用程序可以很容易地从网格功能中受益。然而,在当前的网格基础设施上,建立复杂的医学实验并不简单。为了简化这样的实验,我们正在开发一个通用的、支持网格的工作流框架,它依赖于当前的标准。我们展示了在医学图像配准评估中的具体应用结果。我们讨论了当前标准和工具带来的限制,以及如何克服这些限制来部署应用程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Markov model-based clustering for efficient patient care Incremental learning of ensemble classifiers on ECG data Grid-enabled workflows for data intensive medical applications Case-based tissue classification for monitoring leg ulcer healing Optimisation of neural network training through pre-establishment of synaptic weights applied to body surface mapping classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1