Utilizing a Blockchain for Managing Sensor Metadata in Exposure Health Studies

Aarushi Sarbhai, R. Gouripeddi, Philip Lundrigan, Pavithra Chidambaram, Aakanksha Saha, Randy Madsen, J. Facelli, K. Sward, S. Kasera
{"title":"Utilizing a Blockchain for Managing Sensor Metadata in Exposure Health Studies","authors":"Aarushi Sarbhai, R. Gouripeddi, Philip Lundrigan, Pavithra Chidambaram, Aakanksha Saha, Randy Madsen, J. Facelli, K. Sward, S. Kasera","doi":"10.1109/ietc54973.2022.9796689","DOIUrl":null,"url":null,"abstract":"Commercial Internet of Things (IoT) sensors enable continuous data collection that benefits exposomic studies. The Exposure Health Informatics Ecosystem (EHIE) is one such sensor-based informatics platform for performing multiple simultaneous exposomic studies. It captures data from networks of sensors designed to record air quality in homes of the study’s participants and neighboring areas. In such cases where sensors are continually streaming data, it is crucial to monitor, in real time, the operational status of the network and record possible anomalies. Data collected by these sensors is only useful if it is free of errors. Therefore, maintaining the proper integrity of devices requires the capture of all deployment events that can cause anomalies. Tracking faults by recording system metadata is a difficult task, and we need a mechanism to capture the trajectories of devices within and across studies, systematically capture metadata of deployed version, and assign appropriate provenance to data recorded from each sensor. In this paper, we propose the use of a permissioned blockchain to manage the metadata and connect seemingly unrelated changes to create a trajectory of events that could result in the errors we observe. We implement a preliminary version of our blockchain solution in Hyperledger Fabric to help track errors in such a volatile setup. We also highlight how the properties of blockchain fulfill the essential needs for a metadata management solution needed in our case study.","PeriodicalId":251518,"journal":{"name":"2022 Intermountain Engineering, Technology and Computing (IETC)","volume":"770 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Intermountain Engineering, Technology and Computing (IETC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ietc54973.2022.9796689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Commercial Internet of Things (IoT) sensors enable continuous data collection that benefits exposomic studies. The Exposure Health Informatics Ecosystem (EHIE) is one such sensor-based informatics platform for performing multiple simultaneous exposomic studies. It captures data from networks of sensors designed to record air quality in homes of the study’s participants and neighboring areas. In such cases where sensors are continually streaming data, it is crucial to monitor, in real time, the operational status of the network and record possible anomalies. Data collected by these sensors is only useful if it is free of errors. Therefore, maintaining the proper integrity of devices requires the capture of all deployment events that can cause anomalies. Tracking faults by recording system metadata is a difficult task, and we need a mechanism to capture the trajectories of devices within and across studies, systematically capture metadata of deployed version, and assign appropriate provenance to data recorded from each sensor. In this paper, we propose the use of a permissioned blockchain to manage the metadata and connect seemingly unrelated changes to create a trajectory of events that could result in the errors we observe. We implement a preliminary version of our blockchain solution in Hyperledger Fabric to help track errors in such a volatile setup. We also highlight how the properties of blockchain fulfill the essential needs for a metadata management solution needed in our case study.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用区块链管理暴露健康研究中的传感器元数据
商用物联网(IoT)传感器能够连续收集数据,有利于暴露学研究。暴露健康信息生态系统(EHIE)就是这样一个基于传感器的信息平台,用于执行多个同时暴露研究。它从传感器网络中获取数据,这些传感器被设计用来记录研究参与者家中和邻近地区的空气质量。在传感器不断传输数据的情况下,实时监控网络的运行状态并记录可能的异常情况至关重要。这些传感器收集的数据只有在没有误差的情况下才有用。因此,维护设备的完整性需要捕获所有可能导致异常的部署事件。通过记录系统元数据来跟踪故障是一项艰巨的任务,我们需要一种机制来捕获研究内部和跨研究的设备轨迹,系统地捕获部署版本的元数据,并为每个传感器记录的数据分配适当的来源。在本文中,我们建议使用经过许可的区块链来管理元数据,并将看似无关的更改连接起来,以创建可能导致我们观察到的错误的事件轨迹。我们在Hyperledger Fabric中实现了区块链解决方案的初步版本,以帮助跟踪这种不稳定设置中的错误。我们还强调了区块链的属性如何满足我们案例研究中所需的元数据管理解决方案的基本需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Utilizing a Blockchain for Managing Sensor Metadata in Exposure Health Studies Identifying Patterns in Fault Recovery Techniques and Hardware Status of Radiation Tolerant Computers Using Principal Components Analysis Sketch-a-Map (SAM): Creative Route Art Generation Feature Analysis in Satellite Image Classification Using LC-KSVD and Frozen Dictionary Learning Long Range Sensor Network for Disaster Relief
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1