Multi-Scale Graph Convolutional Network and Dynamic Iterative Class Loss for Ship Segmentation in Remote Sensing Images

Yanru Jiang, Chengyu Zheng, Zhao-Hui Wang, Rui Wang, Min Ye, Chenglong Wang, Ning Song, Jie Nie
{"title":"Multi-Scale Graph Convolutional Network and Dynamic Iterative Class Loss for Ship Segmentation in Remote Sensing Images","authors":"Yanru Jiang, Chengyu Zheng, Zhao-Hui Wang, Rui Wang, Min Ye, Chenglong Wang, Ning Song, Jie Nie","doi":"10.1145/3469877.3497699","DOIUrl":null,"url":null,"abstract":"The accuracy of the semantic segmentation results of ships is of great significance to coastline navigation, resource management, and territorial protection. Although the ship semantic segmentation method based on deep learning has made great progress, there is still the problem of not exploring the correlation between the targets. In order to avoid the above problems, this paper designed a multi-scale graph convolutional network and dynamic iterative class loss for ship segmentation in remote sensing images to generate more accurate segmentation results. Based on DeepLabv3+, our network uses deep convolutional networks and atrous convolutions for multi-scale feature extraction. In particular, for multi-scale semantic features, we propose to construct a Multi-Scale Graph Convolution Network (MSGCN) to introduce semantic correlation information for pixel feature learning by GCN, which enhances the segmentation result of ship objects. In addition, we propose a Dynamic Iterative Class Loss (DICL) based on iterative batch-wise class rectification instead of pre-computing the fixed weights over the whole dataset, which solves the problem of imbalance between positive and negative samples. We compared the proposed algorithm with the most advanced deep learning target detection methods and ship detection methods and proved the superiority of our method. On a High-Resolution SAR Images Dataset [1], ship detection and instance segmentation can be implemented well.","PeriodicalId":210974,"journal":{"name":"ACM Multimedia Asia","volume":"98 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Multimedia Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3469877.3497699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The accuracy of the semantic segmentation results of ships is of great significance to coastline navigation, resource management, and territorial protection. Although the ship semantic segmentation method based on deep learning has made great progress, there is still the problem of not exploring the correlation between the targets. In order to avoid the above problems, this paper designed a multi-scale graph convolutional network and dynamic iterative class loss for ship segmentation in remote sensing images to generate more accurate segmentation results. Based on DeepLabv3+, our network uses deep convolutional networks and atrous convolutions for multi-scale feature extraction. In particular, for multi-scale semantic features, we propose to construct a Multi-Scale Graph Convolution Network (MSGCN) to introduce semantic correlation information for pixel feature learning by GCN, which enhances the segmentation result of ship objects. In addition, we propose a Dynamic Iterative Class Loss (DICL) based on iterative batch-wise class rectification instead of pre-computing the fixed weights over the whole dataset, which solves the problem of imbalance between positive and negative samples. We compared the proposed algorithm with the most advanced deep learning target detection methods and ship detection methods and proved the superiority of our method. On a High-Resolution SAR Images Dataset [1], ship detection and instance segmentation can be implemented well.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多尺度图卷积网络和动态迭代类损失的遥感图像船舶分割
船舶语义分割结果的准确性对海岸线导航、资源管理和国土保护具有重要意义。虽然基于深度学习的船舶语义分割方法已经取得了很大的进展,但仍然存在未探索目标之间相关性的问题。为了避免上述问题,本文设计了遥感图像船舶分割的多尺度图卷积网络和动态迭代类损失,以获得更准确的分割结果。基于DeepLabv3+,我们的网络使用深度卷积网络和亚属性卷积进行多尺度特征提取。特别是针对多尺度语义特征,提出构建多尺度图卷积网络(MSGCN),引入语义相关信息进行像素特征学习,提高了船舶目标的分割效果。此外,我们提出了一种基于迭代分批类校正的动态迭代类损失(Dynamic Iterative Class Loss, DICL)方法,而不是预先计算整个数据集的固定权值,从而解决了正、负样本之间的不平衡问题。将本文算法与目前最先进的深度学习目标检测方法和船舶检测方法进行了比较,证明了本文算法的优越性。在高分辨率SAR图像数据集[1]上,可以很好地实现舰船检测和实例分割。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-Scale Graph Convolutional Network and Dynamic Iterative Class Loss for Ship Segmentation in Remote Sensing Images Structural Knowledge Organization and Transfer for Class-Incremental Learning Hard-Boundary Attention Network for Nuclei Instance Segmentation Score Transformer: Generating Musical Score from Note-level Representation CMRD-Net: An Improved Method for Underwater Image Enhancement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1