Remote access to an interferometric fringes stabilization active system via RENATA

Javier Espitia-Gómez, Luciano Ángel-Toro
{"title":"Remote access to an interferometric fringes stabilization active system via RENATA","authors":"Javier Espitia-Gómez, Luciano Ángel-Toro","doi":"10.1117/12.2031601","DOIUrl":null,"url":null,"abstract":"The Advanced Technology National Network (RENATA, for its acronym in Spanish) is a Colombian, collaborative work tool, linked to other networks worldwide, in which take participation researchers, teachers and students, by sharing laboratory resources located in different universities, institutes and research centers throughout the country. In the Universidad EAFIT (Medellín, Colombia) it has been designed an interferometric fringes stabilization active system, which can be accessed remotely via the RENATA network. A Mach-Zehnder interferometer was implemented, with independent piezoelectric actuators in each arm, with which the lengths of optical path of light that goes over in each of them can be modified. Using these actuators, one can simultaneously perturb the system and compensate the phase differences caused by that perturbation. This allows us to experiment with different disturbs, and analyze the system response to each one of them. This can be made from any location worldwide, and especially from those regions in which optical and optoelectronic components required for the implementation of the interferometer or for the stabilization system are not available. The device can also be used as a platform in order to conduct diverse experiments, involving optical and controlling aspects, constituting with this in a pedagogic tool. For the future, it can be predicted that remote access to available applications would be possible, as well as modifications of the implemented code in labVIEW™, so that researchers and teachers can adapt and improve their functionalities or develop new applications, based on the collaborative work.","PeriodicalId":135913,"journal":{"name":"Iberoamerican Meeting of Optics and the Latin American Meeting of Optics, Lasers and Their Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iberoamerican Meeting of Optics and the Latin American Meeting of Optics, Lasers and Their Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2031601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Advanced Technology National Network (RENATA, for its acronym in Spanish) is a Colombian, collaborative work tool, linked to other networks worldwide, in which take participation researchers, teachers and students, by sharing laboratory resources located in different universities, institutes and research centers throughout the country. In the Universidad EAFIT (Medellín, Colombia) it has been designed an interferometric fringes stabilization active system, which can be accessed remotely via the RENATA network. A Mach-Zehnder interferometer was implemented, with independent piezoelectric actuators in each arm, with which the lengths of optical path of light that goes over in each of them can be modified. Using these actuators, one can simultaneously perturb the system and compensate the phase differences caused by that perturbation. This allows us to experiment with different disturbs, and analyze the system response to each one of them. This can be made from any location worldwide, and especially from those regions in which optical and optoelectronic components required for the implementation of the interferometer or for the stabilization system are not available. The device can also be used as a platform in order to conduct diverse experiments, involving optical and controlling aspects, constituting with this in a pedagogic tool. For the future, it can be predicted that remote access to available applications would be possible, as well as modifications of the implemented code in labVIEW™, so that researchers and teachers can adapt and improve their functionalities or develop new applications, based on the collaborative work.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过RENATA远程访问干涉条纹稳定主动系统
先进技术国家网络(RENATA,西班牙语首字母缩写)是哥伦比亚的一个协作工作工具,与世界各地的其他网络相连,通过共享位于全国不同大学、研究所和研究中心的实验室资源,让研究人员、教师和学生参与其中。EAFIT大学(Medellín,哥伦比亚)设计了干涉条纹稳定有源系统,该系统可通过RENATA网络远程访问。设计了一个马赫-曾德尔干涉仪,每个臂上都有独立的压电驱动器,通过该驱动器可以修改每个臂上光路的长度。使用这些致动器,可以同时扰动系统并补偿由该扰动引起的相位差。这允许我们对不同的干扰进行实验,并分析系统对每种干扰的响应。这可以在世界范围内的任何地方进行,特别是在那些没有实现干涉仪或稳定系统所需的光学和光电子元件的地区。该设备还可以作为一个平台,以进行各种实验,包括光学和控制方面,与此组成一个教学工具。对于未来,可以预测远程访问可用的应用程序是可能的,以及修改labVIEW™中实现的代码,以便研究人员和教师可以根据协作工作调整和改进其功能或开发新的应用程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Remote access to an interferometric fringes stabilization active system via RENATA Optical design of a Coudé-Train for a stable and efficient simultaneous feeding of the ESPRESSO spectrograph from the four VLT telescopes Configurable multipulsing of a MOPA pulsed fiber laser with applications in materials processing New method for sub-structured Ronchi rulings generation and his irradiance profile Photorefractive moiré-like patterns with different variation directions for multi-projection in profilometer applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1