Keyword Query Reformulation on Structured Data

Junjie Yao, B. Cui, Liansheng Hua, Yuxin Huang
{"title":"Keyword Query Reformulation on Structured Data","authors":"Junjie Yao, B. Cui, Liansheng Hua, Yuxin Huang","doi":"10.1109/ICDE.2012.76","DOIUrl":null,"url":null,"abstract":"Textual web pages dominate web search engines nowadays. However, there is also a striking increase of structured data on the web. Efficient keyword query processing on structured data has attracted enough attention, but effective query understanding has yet to be investigated. In this paper, we focus on the problem of keyword query reformulation in the structured data scenario. These reformulated queries provide alternative descriptions of original input. They could better capture users' information need and guide users to explore related items in the target structured data. We propose an automatic keyword query reformulation approach by exploiting structural semantics in the underlying structured data sources. The reformulation solution is decomposed into two stages, i.e., offline term relation extraction and online query generation. We first utilize a heterogenous graph to model the words and items in structured data, and design an enhanced Random Walk approach to extract relevant terms from the graph context. In the online query reformulation stage, we introduce an efficient probabilistic generation module to suggest substitutable reformulated queries. Extensive experiments are conducted on a real-life data set, and our approach yields promising results.","PeriodicalId":321608,"journal":{"name":"2012 IEEE 28th International Conference on Data Engineering","volume":"50 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 28th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2012.76","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

Textual web pages dominate web search engines nowadays. However, there is also a striking increase of structured data on the web. Efficient keyword query processing on structured data has attracted enough attention, but effective query understanding has yet to be investigated. In this paper, we focus on the problem of keyword query reformulation in the structured data scenario. These reformulated queries provide alternative descriptions of original input. They could better capture users' information need and guide users to explore related items in the target structured data. We propose an automatic keyword query reformulation approach by exploiting structural semantics in the underlying structured data sources. The reformulation solution is decomposed into two stages, i.e., offline term relation extraction and online query generation. We first utilize a heterogenous graph to model the words and items in structured data, and design an enhanced Random Walk approach to extract relevant terms from the graph context. In the online query reformulation stage, we introduce an efficient probabilistic generation module to suggest substitutable reformulated queries. Extensive experiments are conducted on a real-life data set, and our approach yields promising results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
结构化数据关键字查询重构
如今,文本网页在网络搜索引擎中占据主导地位。然而,网络上的结构化数据也有了惊人的增长。结构化数据关键字查询的高效处理已经引起了人们的广泛关注,但有效的查询理解还有待研究。本文主要研究结构化数据场景下关键字查询的重构问题。这些重新表述的查询提供了原始输入的替代描述。它们可以更好地捕捉用户的信息需求,引导用户在目标结构化数据中探索相关项目。我们提出了一种利用底层结构化数据源中的结构语义的自动关键字查询重构方法。将重构方案分解为离线的词关系提取和在线的查询生成两个阶段。我们首先利用异构图对结构化数据中的词和项进行建模,并设计了一种增强的随机漫步方法来从图上下文中提取相关术语。在在线查询重构阶段,我们引入了一个高效的概率生成模块来建议可替换的重构查询。在真实的数据集上进行了大量的实验,我们的方法产生了有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Keyword Query Reformulation on Structured Data Accuracy-Aware Uncertain Stream Databases Extracting Analyzing and Visualizing Triangle K-Core Motifs within Networks Project Daytona: Data Analytics as a Cloud Service Automatic Extraction of Structured Web Data with Domain Knowledge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1