Accuracy-Aware Uncertain Stream Databases

Tingjian Ge, Fujun Liu
{"title":"Accuracy-Aware Uncertain Stream Databases","authors":"Tingjian Ge, Fujun Liu","doi":"10.1109/ICDE.2012.96","DOIUrl":null,"url":null,"abstract":"Previous work has introduced probability distributions as first-class components in uncertain stream database systems. A lacking element is the fact of how accurate these probability distributions are. This indeed has a profound impact on the accuracy of query results presented to end users. While there is some previous work that studies unreliable intermediate query results in the tuple uncertainty model, to the best of our knowledge, we are the first to consider an uncertain stream database in which accuracy is taken into consideration all the way from the learned distributions based on raw data samples to the query results. We perform an initial study of various components in an accuracy-aware uncertain stream database system, including the representation of accuracy information and how to obtain query results' accuracy. In addition, we propose novel predicates based on hypothesis testing for decision-making using data with limited accuracy. We augment our study with a comprehensive set of experimental evaluations.","PeriodicalId":321608,"journal":{"name":"2012 IEEE 28th International Conference on Data Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 28th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2012.96","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Previous work has introduced probability distributions as first-class components in uncertain stream database systems. A lacking element is the fact of how accurate these probability distributions are. This indeed has a profound impact on the accuracy of query results presented to end users. While there is some previous work that studies unreliable intermediate query results in the tuple uncertainty model, to the best of our knowledge, we are the first to consider an uncertain stream database in which accuracy is taken into consideration all the way from the learned distributions based on raw data samples to the query results. We perform an initial study of various components in an accuracy-aware uncertain stream database system, including the representation of accuracy information and how to obtain query results' accuracy. In addition, we propose novel predicates based on hypothesis testing for decision-making using data with limited accuracy. We augment our study with a comprehensive set of experimental evaluations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
准确性感知的不确定流数据库
以前的工作已经引入了概率分布作为不确定流数据库系统的一级组件。缺少的一个因素是这些概率分布有多精确。这确实对呈现给最终用户的查询结果的准确性有深远的影响。虽然之前有一些工作研究了元组不确定性模型中不可靠的中间查询结果,但据我们所知,我们是第一个考虑不确定流数据库的人,在这种数据库中,从基于原始数据样本的学习分布到查询结果都要考虑准确性。本文对一个具有精度感知的不确定流数据库系统的各个组成部分进行了初步研究,包括精度信息的表示和如何获得查询结果的精度。此外,我们提出了基于假设检验的新谓词,用于使用有限精度的数据进行决策。我们用一套全面的实验评估来加强我们的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Keyword Query Reformulation on Structured Data Accuracy-Aware Uncertain Stream Databases Extracting Analyzing and Visualizing Triangle K-Core Motifs within Networks Project Daytona: Data Analytics as a Cloud Service Automatic Extraction of Structured Web Data with Domain Knowledge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1