Yufang Xu , Zhirui Zhang , Ping Lu , Ruiqi Li , Peipei Ma , Jianyu Wu , Tao Li , Huiyong Zhang
{"title":"Increasing Fusarium verticillioides resistance in maize by genomics-assisted breeding: Methods, progress, and prospects","authors":"Yufang Xu , Zhirui Zhang , Ping Lu , Ruiqi Li , Peipei Ma , Jianyu Wu , Tao Li , Huiyong Zhang","doi":"10.1016/j.cj.2023.07.004","DOIUrl":null,"url":null,"abstract":"<div><p>Maize (<em>Zea mays</em> L.) is an indispensable crop worldwide for food, feed, and bioenergy production. <em>Fusarium verticillioides</em> (<em>F. verticillioides</em>) is a widely distributed phytopathogen and incites multiple destructive diseases in maize: seedling blight, stalk rot, ear rot, and seed rot. As a soil-, seed-, and airborne pathogen, <em>F. verticillioides</em> can survive in soil or plant residue and systemically infect maize via roots, contaminated seed, silks, or external wounds, posing a severe threat to maize production and quality. Infection triggers complex immune responses: induction of defense-response genes, changes in reactive oxygen species, plant hormone levels and oxylipins, and alterations in secondary metabolites such as flavonoids, phenylpropanoids, phenolic compounds, and benzoxazinoid defense compounds. Breeding resistant maize cultivars is the preferred approach to reducing <em>F. verticillioides</em> infection and mycotoxin contamination. Reliable phenotyping systems are prerequisites for elucidating the genetic structure and molecular mechanism of maize resistance to <em>F. verticillioides</em>. Although many <em>F. verticillioides</em> resistance genes have been identified by genome-wide association study, linkage analysis, bulked-segregant analysis, and various omics technologies, few have been functionally validated and applied in molecular breeding. This review summarizes research progress on the infection cycle of <em>F. verticillioides</em> in maize, phenotyping evaluation systems for <em>F. verticillioides</em> resistance, quantitative trait loci and genes associated with <em>F. verticillioides</em> resistance, and molecular mechanisms underlying maize defense against <em>F. verticillioides</em>, and discusses potential avenues for molecular design breeding to improve maize resistance to <em>F. verticillioides</em>.</p></div>","PeriodicalId":10790,"journal":{"name":"Crop Journal","volume":"11 6","pages":"Pages 1626-1641"},"PeriodicalIF":6.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214514123001113/pdfft?md5=83304e1cd00aa206d20dd661e3876131&pid=1-s2.0-S2214514123001113-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop Journal","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214514123001113","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Maize (Zea mays L.) is an indispensable crop worldwide for food, feed, and bioenergy production. Fusarium verticillioides (F. verticillioides) is a widely distributed phytopathogen and incites multiple destructive diseases in maize: seedling blight, stalk rot, ear rot, and seed rot. As a soil-, seed-, and airborne pathogen, F. verticillioides can survive in soil or plant residue and systemically infect maize via roots, contaminated seed, silks, or external wounds, posing a severe threat to maize production and quality. Infection triggers complex immune responses: induction of defense-response genes, changes in reactive oxygen species, plant hormone levels and oxylipins, and alterations in secondary metabolites such as flavonoids, phenylpropanoids, phenolic compounds, and benzoxazinoid defense compounds. Breeding resistant maize cultivars is the preferred approach to reducing F. verticillioides infection and mycotoxin contamination. Reliable phenotyping systems are prerequisites for elucidating the genetic structure and molecular mechanism of maize resistance to F. verticillioides. Although many F. verticillioides resistance genes have been identified by genome-wide association study, linkage analysis, bulked-segregant analysis, and various omics technologies, few have been functionally validated and applied in molecular breeding. This review summarizes research progress on the infection cycle of F. verticillioides in maize, phenotyping evaluation systems for F. verticillioides resistance, quantitative trait loci and genes associated with F. verticillioides resistance, and molecular mechanisms underlying maize defense against F. verticillioides, and discusses potential avenues for molecular design breeding to improve maize resistance to F. verticillioides.
Crop JournalAgricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
9.90
自引率
3.00%
发文量
638
审稿时长
41 days
期刊介绍:
The major aims of The Crop Journal are to report recent progresses in crop sciences including crop genetics, breeding, agronomy, crop physiology, germplasm resources, grain chemistry, grain storage and processing, crop management practices, crop biotechnology, and biomathematics.
The regular columns of the journal are Original Research Articles, Reviews, and Research Notes. The strict peer-review procedure will guarantee the academic level and raise the reputation of the journal. The readership of the journal is for crop science researchers, students of agricultural colleges and universities, and persons with similar academic levels.