Qingqing Yang , Yan Tan , Ying Ye , Dongsheng Zhao , Qiaoquan Liu
{"title":"Serotonin enrichment of rice endosperm by metabolic engineering","authors":"Qingqing Yang , Yan Tan , Ying Ye , Dongsheng Zhao , Qiaoquan Liu","doi":"10.1016/j.cj.2023.07.003","DOIUrl":null,"url":null,"abstract":"<div><p>In animals, serotonin is a neurotransmitter and mood regulator. In plants, serotonin functions in energy acquisition, tissue maintenance, delay of senescence, and response to biotic and abiotic stresses. In this study, we examined the effect of serotonin enrichment of rice endosperm on plant growth, endosperm development, and grain quality. To do so, <em>TDCs</em> and <em>T5H</em> were selected as targets for serotonin fortification. Overexpression of <em>TDC1</em> or <em>TDC3</em> increased serotonin accumulation relative to overexpression of <em>T5H</em> in rice grain. Transgenic lines of target genes driven by the <em>Gt1</em> promoter showed better field performance than those driven by the <em>Ubi</em> promoter. Overexpression of <em>T5H</em> showed little effect on plant growth or grain physicochemical quality. In neuronal cell culture assays, serotonin induced neuroprotective action against apoptosis. Breeding of rice cultivars with high serotonin content may be beneficial for health and nutrition.</p></div>","PeriodicalId":10790,"journal":{"name":"Crop Journal","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214514123000995/pdfft?md5=dea353c70e8e6d9e927575ac1fbd4cc6&pid=1-s2.0-S2214514123000995-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop Journal","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214514123000995","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
In animals, serotonin is a neurotransmitter and mood regulator. In plants, serotonin functions in energy acquisition, tissue maintenance, delay of senescence, and response to biotic and abiotic stresses. In this study, we examined the effect of serotonin enrichment of rice endosperm on plant growth, endosperm development, and grain quality. To do so, TDCs and T5H were selected as targets for serotonin fortification. Overexpression of TDC1 or TDC3 increased serotonin accumulation relative to overexpression of T5H in rice grain. Transgenic lines of target genes driven by the Gt1 promoter showed better field performance than those driven by the Ubi promoter. Overexpression of T5H showed little effect on plant growth or grain physicochemical quality. In neuronal cell culture assays, serotonin induced neuroprotective action against apoptosis. Breeding of rice cultivars with high serotonin content may be beneficial for health and nutrition.
Crop JournalAgricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
9.90
自引率
3.00%
发文量
638
审稿时长
41 days
期刊介绍:
The major aims of The Crop Journal are to report recent progresses in crop sciences including crop genetics, breeding, agronomy, crop physiology, germplasm resources, grain chemistry, grain storage and processing, crop management practices, crop biotechnology, and biomathematics.
The regular columns of the journal are Original Research Articles, Reviews, and Research Notes. The strict peer-review procedure will guarantee the academic level and raise the reputation of the journal. The readership of the journal is for crop science researchers, students of agricultural colleges and universities, and persons with similar academic levels.