A multi-Biclustering Combinatorial Based algorithm

E. Nosova, G. Raiconi, R. Tagliaferri
{"title":"A multi-Biclustering Combinatorial Based algorithm","authors":"E. Nosova, G. Raiconi, R. Tagliaferri","doi":"10.1109/CIDM.2011.5949454","DOIUrl":null,"url":null,"abstract":"In the last years a large amount of information about genomes was discovered, increasing the complexity of analysis. Therefore the most advanced techniques and algorithms are required. In many cases researchers use unsupervised clustering. But the inability of clustering to solve a number of tasks requires new algorithms. So, recently, scientists turned their attention to the biclustering techniques. In this paper we propose a novel biclustering technique, that we call Combinatorial Biclustering Algorithm (BCA). This technique permits to solve the following problems: 1) classification of data with respect to rows and columns together; 2) discovering of the overlapped biclusters; 3) definition of the minimal number of rows and columns in biclusters; 4) finding all biclusters together. We apply our model to two synthetic and one real biological data sets and show the results.","PeriodicalId":211565,"journal":{"name":"2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","volume":"107 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIDM.2011.5949454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In the last years a large amount of information about genomes was discovered, increasing the complexity of analysis. Therefore the most advanced techniques and algorithms are required. In many cases researchers use unsupervised clustering. But the inability of clustering to solve a number of tasks requires new algorithms. So, recently, scientists turned their attention to the biclustering techniques. In this paper we propose a novel biclustering technique, that we call Combinatorial Biclustering Algorithm (BCA). This technique permits to solve the following problems: 1) classification of data with respect to rows and columns together; 2) discovering of the overlapped biclusters; 3) definition of the minimal number of rows and columns in biclusters; 4) finding all biclusters together. We apply our model to two synthetic and one real biological data sets and show the results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于多双聚类的组合算法
在过去的几年里,大量关于基因组的信息被发现,增加了分析的复杂性。因此,需要最先进的技术和算法。在许多情况下,研究人员使用无监督聚类。但是聚类无法解决许多任务需要新的算法。所以,最近,科学家们把注意力转向了双聚类技术。本文提出了一种新的双聚类技术,我们称之为组合双聚类算法(BCA)。该技术允许解决以下问题:1)将数据按行和列进行分类;2)重叠双星团的发现;3)定义双聚类的最小行数和最小列数;4)找到所有的双星团。我们将该模型应用于两个合成数据集和一个真实生物数据集,并展示了结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A multi-Biclustering Combinatorial Based algorithm Active classifier training with the 3DS strategy Link Pattern Prediction with tensor decomposition in multi-relational networks Using gaming strategies for attacker and defender in recommender systems Generating materialized views using ant based approaches and information retrieval technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1